Chamber pressure skewness corrections using a passive relief valve system at the pico oscillating water column wave energy plant

2018 ◽  
Vol 128 ◽  
pp. 230-240 ◽  
Author(s):  
Kieran Monk ◽  
Victor Winands ◽  
Miguel Lopes
2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Piyush Mohapatra ◽  
K. G. Vijay ◽  
Anirban Bhattacharyya ◽  
Trilochan Sahoo

Abstract Oscillating water column (OWC) wave energy converters are one of the most widely researched devices for ocean wave energy harvesting. This study investigates the hydrodynamic performance of a shore-fixed OWC device for different bottom slopes using two numerical approaches, namely, computational fluid dynamics (CFD) and boundary integral equation method (BIEM). In the BIEM method, the boundary value problem is solved in two-dimensional Cartesian coordinates using the linear water wave theory. The CFD model uses a numerical wave tank (NWT) built using the volume of fluid (VOF) method. Numerical computations are carried out for different sloped bottom geometries and front wall drafts to analyze the hydrodynamic efficiency. There is a general agreement between CFD and BIEM results in terms of resonating behavior of the device. It is observed that the front wall draft has a more significant effect, a lower draft leading to a wider frequency band for optimum conversion at high efficiency. While the BIEM-based analysis resulted in improved performance curve for few of the steeper slopes, the CFD study predicted a lower peak efficiency for the same slopes due to the consideration of real fluid characteristics. Detailed performance comparisons are presented using the time histories of free surface elevation, chamber pressure, and streamlines at different time instants within the OWC chamber.


Author(s):  
Prasad V. Dudhgaonkar ◽  
V. Jayashankar ◽  
Purnima Jalihal ◽  
S. Kedarnath ◽  
T. Setoguchi ◽  
...  

A bidirectional (oscillating) air flow is central to energy conversion from wave to wire in an oscillating water column based wave energy plant. Several classes of bidirectional turbines, which operate with such an oscillating flow, have been designed and tested with limited efficiencies. A topology which uses fluidic diodes in conjunction with unidirectional turbines is shown to significantly improve the efficiency. The design and test results from several fluidic diodes for such an application are discussed. It is shown that a combination of a fluidic diode and the unidirectional turbine can achieve a very high impedance to reverse flow while having a high efficiency in the forward direction, over a wide range of flow coefficients.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Erlantz Otaola ◽  
Aitor J. Garrido ◽  
Jon Lekube ◽  
Izaskun Garrido

Oscillating Water Column (OWC) based devices are arising as one of the most promising technologies for wave energy harnessing. However, the most widely used turbine comprising its power take-off (PTO) module, the Wells turbine, presents some drawbacks that require special attention. Notwithstanding different control strategies are being followed to overcome these issues; the use of other self-rectifying turbines could directly achieve this goal at the expense of some extra construction, maintenance, and operation costs. However, these newly developed turbines in turn show diverse behaviours that should be compared for each case. This paper aims to analyse this comparison for the Mutriku wave energy power plant.


2014 ◽  
Vol 64 ◽  
pp. 255-265 ◽  
Author(s):  
Yongyao Luo ◽  
Jean-Roch Nader ◽  
Paul Cooper ◽  
Song-Ping Zhu

2021 ◽  
Author(s):  
Tomoki Ikoma ◽  
Shota Hirai ◽  
Yasuhiro Aida ◽  
Koichi Masuda

Abstract Wave energy converters (WECs) have been extensively researched. The behaviour of the oscillating water column (OWC) in OWC WECs is extremely complex due to the interaction of waves, air, and turbines. Several problems must be overcome before such WECs can be put to practical use. One problem is that the effect of the difference in scale between a small-scale experimental model and a full-scale model is unclear. In this study, several OWC models with different scales and geometries were used in forced oscillation tests. The wave tank was 7.0 m wide, 24.0 m long, and 1.0 m deep. In the static water experiment, we measured the air pressure and water surface fluctuations in an air chamber. For the experiments, models with a box shape with an open bottom, a manifold shape with an open bottom, and a box shape with a front opening, respectively, were fabricated. Furthermore, 1/1, 1/2, and 1/4 scale models were fabricated for each shape to investigate the effects of scale and shape on the air chamber characteristics. Numerical calculations were carried out by applying linear potential theory and the results were compared with the experimental values. The results confirmed that the air chamber shape and scale affect the air pressure fluctuation and water surface fluctuation inside the OWC system.


2021 ◽  
Vol 407 ◽  
pp. 128-137
Author(s):  
Vinícius Bloss ◽  
Camila Fernandes Cardozo ◽  
Flávia Schwarz Franceschini Zinani ◽  
Luiz Alberto Oliveira Rocha

Theoretically, ocean waves contain enough mechanical energy to supply the entire world’s demand and, as of late, are seen as a promising source of renewable energy. To this end, several different technologies of Wave Energy Converters (WEC) have been developed such as Oscillating Water Column (OWC) devices. OWCs are characterized by a chamber in which water oscillates inside and out in a movement similar to that of a piston. This movement directs air to a chimney where a turbine is attached to convert mechanical energy. The analysis conducted was based on the Constructive Design Method, in which a numerical study was carried out to obtain the geometric configuration that maximized the conversion of wave energy into mechanical energy. Three degrees of freedom were used: the ratio of height to length of the hydropneumatic chamber (H1/L), the ratio of the height of the chimney to its diameter (H2/d) and the ratio of the width of the hydropneumatic chamber to the width of the wave tank (W/Z). A Design of Experiments (DoE) technique coupled with Central Composite Design (CCD) allowed the simulation of different combinations of degrees of freedom. This allowed the construction of Response Surfaces and correlations for the efficiency of the system depending on the degrees of freedom (width and height of the chamber), as well as the optimization of the system based on the Response Surfaces.


Sign in / Sign up

Export Citation Format

Share Document