On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects

2020 ◽  
Vol 153 ◽  
pp. 1100-1110
Author(s):  
J. Izquierdo ◽  
A. Crespo Márquez ◽  
J. Uribetxebarria ◽  
A. Erguido
2011 ◽  
Vol 255-260 ◽  
pp. 3933-3937
Author(s):  
Yu Meng Wu ◽  
Jun Chang

In this paper, decision-making tree and Markov process are used to select maintenance strategies of in-service bridges with the minimum LCC (life-cycle cost). Other costs in life cycle are considered comprehensively when establish the model to find the optimal maintenance strategy. Finally, an example is given to verify the efficiency of the model. The research methodology can provide effective support to bridge maintenance management decision-maker for making management strategies.


2021 ◽  
Vol 13 (14) ◽  
pp. 7943
Author(s):  
Shamsan Alsubal ◽  
Wesam Salah Alaloul ◽  
Eu Lim Shawn ◽  
M. S. Liew ◽  
Pavitirakumar Palaniappan ◽  
...  

The Government of Malaysia has set a striving target to achieve a higher usage of renewable energy (RE) in the energy mix which is currently around 2% of the country’s electricity. Yet, the government intends to increase this ratio up to 20% by the year 2025. Most of the renewable energy in Malaysia comes from hydropower and biomass sources. Meanwhile, numerous studies have been conducted to determine the feasibility of wind energy in Malaysia. Several locations were reported to be economically viable for wind energy development such as Kudat, Mersing, and Kuala Terengganu. This study presents and discusses the whole life cycle cost analysis of an offshore wind farm in Kudat, Malaysia and determines the cost drivers of offshore wind energy developments. It covers the wind data collection and analysis, breakdown of whole life cycle cost structure, and calculation of the levelized cost of energy (LCOE). Results showed that almost 67% of the total cost was incurred by the capital expenditure (CAPEX), and around 26% by operation and maintenance costs (OPEX), while decommissioning costs (DECOM) reached up to 7% of the whole life cycle costs. The LCOE was calculated and determined to be USD 127.58/MWh.


1994 ◽  
Vol 11 (1) ◽  
pp. 47-56
Author(s):  
Virginia C. Day ◽  
Zachary F. Lansdowne ◽  
Richard A Moynihan ◽  
John A. Vitkevich

2011 ◽  
Vol 4 (5) ◽  
pp. 158-161 ◽  
Author(s):  
A. Morfonios A. Morfonios ◽  
◽  
D. Kaitelidou D. Kaitelidou ◽  
G. Filntisis G. Filntisis ◽  
G. Baltopoulos G. Baltopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document