Study on in-Service Bridge LCC Decision Model Based on Maintenance Management System

2011 ◽  
Vol 255-260 ◽  
pp. 3933-3937
Author(s):  
Yu Meng Wu ◽  
Jun Chang

In this paper, decision-making tree and Markov process are used to select maintenance strategies of in-service bridges with the minimum LCC (life-cycle cost). Other costs in life cycle are considered comprehensively when establish the model to find the optimal maintenance strategy. Finally, an example is given to verify the efficiency of the model. The research methodology can provide effective support to bridge maintenance management decision-maker for making management strategies.

2008 ◽  
Vol 385-387 ◽  
pp. 845-848
Author(s):  
Moe M.S. Cheung ◽  
Kevin K.L. So ◽  
Xue Qing Zhang

This paper proposes a life-cycle cost (LCC) management methodology that integrates corrosion deterioration and fatigue damage mechanisms. This LCC management methodology has four characterized features: (1) corrosion deterioration and fatigue damage models are used to predict the time when the pre-defined limits are reached; (2) the performance of the steel girder is measured by condition state sets in which deflection, moment and shear capacities and fatigue strength limits are considered altogether; (3) the cost-effectiveness of management strategies are measured by the performance improvement per unit of money spent; and (4) the LCC model includes initial design/construction cost, inspection cost, maintenance cost, repair/rehabilitation cost and failure cost. A steel girder bridge is used as an example to demonstrate the application of the proposed LCC management methodology.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Sung-Min Choi ◽  
Yeon-Sil Lee

Currently, repair and maintenance cycles that follow the completion of construction facilities lead to the necessitation of subsequent data on the analysis of study and plan for maintenance. As such, an index of evaluation was drafted and a plan of maintenance cycle was computed using the investigation data derived from surveying target housing units in permanent rental environmental conditions, with a minimum age of 20 years, and their maintenance history. Optimal maintenance and replacement methods were proposed based on this data. Economic analysis was conducted through the Risk-Weighted Life Cycle Cost (RWLCC) method in order to determine the cost analysis of maintenance life cycle methods used for repair. Current maintenance cycle methods that have been used for 20 years were also compared with alternative maintenance cycles.


2013 ◽  
Vol 718-720 ◽  
pp. 2473-2478
Author(s):  
Xian Wu Hao ◽  
Ya Xun Yang

Our project cost control is mostly concentrated in the construction phase cost control , tends to ignore the costs of the operational phase control.For the maintenance and repair of the existing bridge structure , this paper proposed the concept of life-cycle cost,had a detailed analysis of the composition of the life cycle cost.Based on the discount rate , and used the application of engineering principles of economics,proposed optimization mathematical model of the life cycle cost ,and gave the life-cycle cost analysis for bridge maintenance program with examples ,verified the validity of the model and the implementation of the need for life-cycle cost analysis, and it had practical significance for bridge maintenance phase of cost control.


2020 ◽  
Vol 153 ◽  
pp. 1100-1110
Author(s):  
J. Izquierdo ◽  
A. Crespo Márquez ◽  
J. Uribetxebarria ◽  
A. Erguido

Author(s):  
Jingqin Gao ◽  
Kaan Ozbay ◽  
Hani Nassif ◽  
Onur Kalan

The sustainability of transportation infrastructure depends on the adoption of new construction materials and technologies that can potentially improve performance and productivity. However, most agencies would like to evaluate these new materials and technologies at both the project and network levels before replacing the traditional ones. It also remains a challenge to reliably estimate the costs and lifetime performance of new construction materials and technologies because of limited implementation data. To address these issues, this paper presents a comprehensive bottom-up methodology based on Life Cycle Cost Analysis (LCCA) to integrate project- and network-level analysis that can fast-track the acceptance of new materials or technologies. Hypothesized improvement rates are applied to the deterioration functions of existing materials to represent the expected improved performance of a new material compared with a conventional material with relatively similar characteristics. This new approach with stochastic treatment allows us to probabilistically evaluate new materials with limited data for their future performance. Feasible maintenance and rehabilitation schedules are found for each facility at the project level and near-optimal investment strategies are identified at the network level by using a metaheuristic evolutionary algorithm while satisfying network-wide constraints. This provides an effective solution to many issues that have not been fully addressed in the past, including the trade-off between multiple objectives, effects of time, uncertainty, and outcome interpretation. A hypothetical bridge deck system from New Jersey’s bridge inventory database is used to demonstrate the applicability of the proposed methodology in constructing a planning and management decision-support procedure.


Sign in / Sign up

Export Citation Format

Share Document