Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning

2021 ◽  
Vol 163 ◽  
pp. 1299-1317 ◽  
Author(s):  
Ahmet Coşgun ◽  
M. Erdem Günay ◽  
Ramazan Yıldırım
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 295
Author(s):  
Mei Yin Ong ◽  
Saifuddin Nomanbhay ◽  
Fitranto Kusumo ◽  
Raja Mohamad Hafriz Raja Shahruzzaman ◽  
Abd Halim Shamsuddin

In this study, coconut oils have been transesterified with ethanol using microwave technology. The product obtained (biodiesel and FAEE) was then fractional distillated under vacuum to collect bio-kerosene or bio-jet fuel, which is a renewable fuel to operate a gas turbine engine. This process was modeled using RSM and ANN for optimization purposes. The developed models were proved to be reliable and accurate through different statistical tests and the results showed that ANN modeling was better than RSM. Based on the study, the optimum bio-jet fuel production yield of 74.45 wt% could be achieved with an ethanol–oil molar ratio of 9.25:1 under microwave irradiation with a power of 163.69 W for 12.66 min. This predicted value was obtained from the ANN model that has been optimized with ACO. Besides that, the sensitivity analysis indicated that microwave power offers a dominant impact on the results, followed by the reaction time and lastly ethanol–oil molar ratio. The properties of the bio-jet fuel obtained in this work was also measured and compared with American Society for Testing and Materials (ASTM) D1655 standard.


Author(s):  
Mahesh Brahmadesham Venkataraman ◽  
Alireza Rahbari ◽  
Philip J van Eyk ◽  
Alan W. Weimer ◽  
Wojciech Lipiński ◽  
...  

Algal biomass is an attractive feedstock for carbon-neutral fuel production due to high growth rates and its potential to be farmed in artificial ponds on non-arable land. Supercritical water gasification...


2021 ◽  
Author(s):  
Cherilyn Dignan

Canada, as one of the largest producers and consumers of fossil fuels per capita on the planet, is attempting to reduce greenhouse gas (GHG) emissions. In order to accomplish this, fuel alternatives, such as biofuel, are required. Accordingly, this study uses LCA methodology to quantify the GHG impact of a unique biofuel production model. This unique model produces biodiesel (BD), acetone, butanol and ethanol (ABE) from microalgae and assesses the process GHG impact against other microalgal BD production processes. This study’s microalgal BD and ABE production process produces 76 kgCO2e per functional unit, whereas other comparable microalgal BD production processes produce between 3.7 and 85 kgCO2e. Overall, this study clarifies that without the development of versatile infrastructure to accommodate biofuel production, LCA studies will continue to find renewable fuel production processes net GHG positive for the simple reason that fossil resources are still the primary energy source.


2012 ◽  
Vol 103 (1) ◽  
pp. 484-488 ◽  
Author(s):  
Yubin Zheng ◽  
Zhanyou Chi ◽  
Ben Lucker ◽  
Shulin Chen

2015 ◽  
Vol 71 (8) ◽  
pp. 1229-1234 ◽  
Author(s):  
Paula Peixoto Assemany ◽  
Maria Lucia Calijuri ◽  
Eduardo de Aguiar do Couto ◽  
Aníbal Fonseca Santiago ◽  
Alberto José Delgado dos Reis

The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.


Fuel ◽  
2021 ◽  
pp. 122613
Author(s):  
Hao Xu ◽  
Yimeng Li ◽  
Zhaofei Li ◽  
Yang Song ◽  
Yanyan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document