scholarly journals A field study of ice accretion and its effects on the power production of utility-scale wind turbines

Author(s):  
Linyue Gao ◽  
Tao Tao ◽  
Yongqian Liu ◽  
Hui Hu
2021 ◽  
Vol 118 (42) ◽  
pp. e2111461118
Author(s):  
Linyue Gao ◽  
Hui Hu

A field campaign was carried out to investigate ice accretion features on large turbine blades (50 m in length) and to assess power output losses of utility-scale wind turbines induced by ice accretion. After a 30-h icing incident, a high-resolution digital camera carried by an unmanned aircraft system was used to capture photographs of iced turbine blades. Based on the obtained pictures of the frozen blades, the ice layer thickness accreted along the blades’ leading edges was determined quantitatively. While ice was found to accumulate over whole blade spans, outboard blades had more ice structures, with ice layers reaching up to 0.3 m thick toward the blade tips. With the turbine operating data provided by the turbines’ supervisory control and data acquisition systems, icing-induced power output losses were investigated systematically. Despite the high wind, frozen turbines were discovered to rotate substantially slower and even shut down from time to time, resulting in up to 80% of icing-induced turbine power losses during the icing event. The research presented here is a comprehensive field campaign to characterize ice accretion features on full-scaled turbine blades and systematically analyze detrimental impacts of ice accumulation on the power generation of utility-scale wind turbines. The research findings are very useful in bridging the gaps between fundamental icing physics research carried out in highly idealized laboratory settings and the realistic icing phenomena observed on utility-scale wind turbines operating in harsh natural icing conditions.


Author(s):  
Andrew Hays ◽  
Kenneth Van Treuren

Wind energy has had a major impact on the generation of renewable energy. While most research and development focuses on large, utility-scale wind turbines, a new application is in the field of small wind turbines in the urban environment. A major design challenge for these urban wind turbines is the noise generated during operation. This study examines the power production and the noise generated by two small-scale wind turbines tested in a small wind tunnel. Both rotors were designed using the Blade-Element Momentum Theory and either the NREL S823 or the Eppler 216 airfoils. Point noise measurements were taken using a 1/4” microphone at three locations downstream of the turbine: 16% of the diameter (two chord lengths), 50% of the diameter, and 75% of the diameter. At each horizontal location downstream of the turbine, a vertical traverse was performed to analyze the sound pressure level from the tip of the turbine blades down to the hub. The rotor designed with the Eppler 216 airfoil showed a 9% increase in power production and decrease of up to 7 dB(A).


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Andrew Hays ◽  
Kenneth W. Van Treuren

Wind energy has had a major impact on the generation of renewable energy. While most research and development focuses on large, utility-scale wind turbines, a new application is in the field of small wind turbines for the urban environment. A major design challenge for urban wind turbines is the noise generated during operation. This study examines the power production and the noise generated by two small-scale wind turbines tested in a small wind tunnel. Both rotors were designed using the blade-element momentum theory using either the NREL S823 or the Eppler 216 airfoils. Point noise measurements were taken using a microphone at three locations downstream of the turbine: 16% of the diameter (two chord lengths), 50% of the diameter, and 75% of the diameter. At each location downstream of the turbine, a vertical traverse was performed to analyze the sound pressure level (SPL) from the tip of the turbine blades down to the hub. The rotor designed with the Eppler 216 airfoil showed a 9% increase in power production and decrease of up to 7 dB(A).


2020 ◽  
Vol 12 (6) ◽  
pp. 063307 ◽  
Author(s):  
Michael F. Howland ◽  
Carlos Moral González ◽  
Juan José Pena Martínez ◽  
Jesús Bas Quesada ◽  
Felipe Palou Larrañaga ◽  
...  

Author(s):  
Ricardo Faerron Guzmán ◽  
Kolja Müller ◽  
Luca Vita ◽  
Po Wen Cheng

Aligned with work performed in deliverable D7.7 of the H2020 project LIFES50+, this study supports the definition of the numerical setup in the design of floating offshore wind turbines. The results of extensive simulation studies are presented, which focus particularly on determining the requirements for the load simulations in the design process. The analysis focusses on the cases of: (1) fatigue during power production and (2) ultimate loads during power production and severe sea state. For the fatigue load case, sensitivity study is performed in order to determine relevant load conditions and the expected impact of a variation in the environmental loading. Additionally, focus is put on the requirements regarding the run-in time, number of seeds and the simulation length for both fatigue and ultimate limit state (FLS, ULS) analysis. Another topic addressed is the benefit of using an increased number of seeds rather than extending the simulation time of single seeds, when a given total simulation time is required as described in the guidelines. The run-in time may be shortened when using predetermined steady states as initial conditions. Requirements for the steady state simulations are also determined and presented.


2021 ◽  
Author(s):  
Hans Lustfeld

Abstract The main advantage of wind-solar power is the electric power production free of CO2. Its main disadvantage is the huge volatility of the system [national electric energy consumption powered by wind-solar power]. In fact, if this power production, averaged over one year, corresponds to the averaged electric consumption and is intended to replace all other electric power generating devices, then controlling the volatility of this system by using storage alone requires huge capacities of about 30TWh, capacities not available in Germany. However, based on German power data over the last six years (2015 till 2020) we show that the required storage capacity is decisively reduced, provided i) a surplus of wind-solar power is supplied, ii) smart meters are installed, iii) a different kind of wind turbines and solar panels is partially used, iv) a novel function describing this volatile system, is introduced. The new function, in turn, depends on three characteristic numbers, which means, that the volatility of this system is characterized by those numbers. When applying our schemes the results suggest that all the present electric energy in Germany can be obtained from controlled wind-solar power. And our results indicate that controlled wind-solar power can produce the energy for transportation, warm water, space heating and in part for process heating, requirering an increase of the electric energy production by a factor of 5. Then, however, a huge number of wind turbines and solar panels is required changing the appearance of German landscapes fundamentally.


2020 ◽  
Author(s):  
Hussein Al-Qarishey ◽  
Robert W. Fletcher

Abstract Wind turbines can create turbulence and downstream wakes which can introduce generation losses of downstream impacted turbines. These downstream turbine-induced losses are due to two different conditions. The first is from power-producing rotating blades of upstream wind turbines agitating the subsequent downstream wind in a cork-screw like manner. The second is from non-rotating, non-operational, non-power-generating wind turbines. These non-operating turbines may be under scheduled service shutdown, or rendered non-functional due to longer-term or permanent mechanical problems. In this work CFD was used to study downstream turbulence and wakes of a utility-scale, non-operational three-blade horizontal axis wind turbines (HAWT). A flow field was constructed using an unstructured grid around a HAWT (rotor hub elevation of 80 meters and a blade length of 40 meters). Various wind velocities were studied up to 25 meters per second. Incompressible flow was used to assess downstream turbulence using a three-dimensional steady state and unsteady state SST k-ω (two equation) turbulence model. Different blade positions with respect to angle of attack (α) were studied, with a 4 degree angle of attack reported here. Pressures and velocities for distances of 100 meters in front and 500 meters downstream from the wind turbine are reported.


Sign in / Sign up

Export Citation Format

Share Document