scholarly journals Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines

2021 ◽  
Vol 118 (42) ◽  
pp. e2111461118
Author(s):  
Linyue Gao ◽  
Hui Hu

A field campaign was carried out to investigate ice accretion features on large turbine blades (50 m in length) and to assess power output losses of utility-scale wind turbines induced by ice accretion. After a 30-h icing incident, a high-resolution digital camera carried by an unmanned aircraft system was used to capture photographs of iced turbine blades. Based on the obtained pictures of the frozen blades, the ice layer thickness accreted along the blades’ leading edges was determined quantitatively. While ice was found to accumulate over whole blade spans, outboard blades had more ice structures, with ice layers reaching up to 0.3 m thick toward the blade tips. With the turbine operating data provided by the turbines’ supervisory control and data acquisition systems, icing-induced power output losses were investigated systematically. Despite the high wind, frozen turbines were discovered to rotate substantially slower and even shut down from time to time, resulting in up to 80% of icing-induced turbine power losses during the icing event. The research presented here is a comprehensive field campaign to characterize ice accretion features on full-scaled turbine blades and systematically analyze detrimental impacts of ice accumulation on the power generation of utility-scale wind turbines. The research findings are very useful in bridging the gaps between fundamental icing physics research carried out in highly idealized laboratory settings and the realistic icing phenomena observed on utility-scale wind turbines operating in harsh natural icing conditions.

Author(s):  
Andrew Hays ◽  
Kenneth Van Treuren

Wind energy has had a major impact on the generation of renewable energy. While most research and development focuses on large, utility-scale wind turbines, a new application is in the field of small wind turbines in the urban environment. A major design challenge for these urban wind turbines is the noise generated during operation. This study examines the power production and the noise generated by two small-scale wind turbines tested in a small wind tunnel. Both rotors were designed using the Blade-Element Momentum Theory and either the NREL S823 or the Eppler 216 airfoils. Point noise measurements were taken using a 1/4” microphone at three locations downstream of the turbine: 16% of the diameter (two chord lengths), 50% of the diameter, and 75% of the diameter. At each horizontal location downstream of the turbine, a vertical traverse was performed to analyze the sound pressure level from the tip of the turbine blades down to the hub. The rotor designed with the Eppler 216 airfoil showed a 9% increase in power production and decrease of up to 7 dB(A).


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Andrew Hays ◽  
Kenneth W. Van Treuren

Wind energy has had a major impact on the generation of renewable energy. While most research and development focuses on large, utility-scale wind turbines, a new application is in the field of small wind turbines for the urban environment. A major design challenge for urban wind turbines is the noise generated during operation. This study examines the power production and the noise generated by two small-scale wind turbines tested in a small wind tunnel. Both rotors were designed using the blade-element momentum theory using either the NREL S823 or the Eppler 216 airfoils. Point noise measurements were taken using a microphone at three locations downstream of the turbine: 16% of the diameter (two chord lengths), 50% of the diameter, and 75% of the diameter. At each location downstream of the turbine, a vertical traverse was performed to analyze the sound pressure level (SPL) from the tip of the turbine blades down to the hub. The rotor designed with the Eppler 216 airfoil showed a 9% increase in power production and decrease of up to 7 dB(A).


2018 ◽  
Vol 8 (12) ◽  
pp. 2660 ◽  
Author(s):  
Longyan Wang ◽  
Yunkai Zhou ◽  
Jian Xu

Optimal design of wind turbine placement in a wind farm is one of the most effective tools to reduce wake power losses by alleviating the wake effect in the wind farm. In comparison to the discrete grid-based wind farm design method, the continuous coordinate method has the property of continuously varying the placement of wind turbines, and hence, is far more capable of obtaining the global optimum solutions. In this paper, the coordinate method was applied to optimize the layout of a real offshore wind farm for both simplified and realistic wind conditions. A new analytical wake model (Jensen-Gaussian model) taking into account the wake velocity variation in the radial direction was employed for the optimization study. The means of handling the irregular real wind farm boundary were proposed to guarantee that the optimized wind turbine positions are feasible within the wind farm boundary, and the discretization method was applied for the evaluation of wind farm power output under Weibull distribution. By investigating the wind farm layout optimization under different wind conditions, it showed that the total wind farm power output increased linearly with an increasing number of wind turbines. Under some particular wind conditions (e.g., constant wind speed and wind direction, and Weibull distribution), almost the same power losses were obtained under the wake effect of some adjacent wind turbine numbers. A common feature of the wind turbine placements regardless of the wind conditions was that they were distributed along the wind farm boundary as much as possible in order to alleviate the wake effect.


2020 ◽  
Vol 59 (11) ◽  
pp. 1845-1864
Author(s):  
Lukas Strauss ◽  
Stefano Serafin ◽  
Manfred Dorninger

AbstractIn this paper, a verification study of the skill and potential economic value of forecasts of ice accretion on wind turbines is presented. The phase of active ice formation on turbine blades has been associated with the strongest wind power production losses in cold climates; however, skillful icing forecasts could permit taking protective measures using anti-icing systems. Coarse- and high-resolution forecasts for the range up to day 3 from global (IFS and GFS) and limited-area (WRF) models are coupled to the Makkonen icing model. Surface and upper-air observations and icing measurements at turbine hub height at two wind farms in central Europe are used for model verification over two winters. Two case studies contrasting a correct and an incorrect forecast highlight the difficulty of correctly predicting individual icing events. A meaningful assessment of model skill is possible only after bias correction of icing-related parameters and selection of model-dependent optimal thresholds for ice growth rate. The skill of bias-corrected forecasts of freezing and humid conditions is virtually identical for all models. Hourly forecasts of active ice accretion generally show limited skill; however, results strongly suggest the superiority of high-resolution WRF forecasts relative to other model variants. Predictions of the occurrence of icing within a period of 6 h are found to have substantially better accuracy. Probabilistic forecasts of icing that are based on gridpoint neighborhood ensembles show slightly higher potential economic value than forecasts that are based on individual gridpoint values, in particular at low cost-loss ratios, that is, when anti-icing measures are comparatively inexpensive.


2016 ◽  
Vol 753 ◽  
pp. 022022 ◽  
Author(s):  
Ozcan Yirtici ◽  
Ismail H. Tuncer ◽  
Serkan Ozgen

2011 ◽  
Vol 332-334 ◽  
pp. 828-832
Author(s):  
Xiao Dong Chen ◽  
Mei Ling Kuang ◽  
Ya Ming Jiang

This paper is mainly to design the small wind turbine blades to make the wind turbines have automatic braking ability. This study has two main aspects, including choosing the reinforced materials and designing the structure of the blades. According to the fiber hybrid principle, carbon fibers are employed in the main stress area of the blades and other area using glass fiber. At the same time, Aramid fibers are mixed in every area of the blade in order to enhance the tenacity of the blade. The other work is designing the structure of the blade with big main body and small abdomen which twists easily. At the designed wind speed, the power output reaches its rated capacity. Above this wind speed, turbine blades twist to adapt to wind speed and make the rotor solidity of wind turbine declined. While the wind speed changes and becomes small, the torsion of wind turbines’ blades turns back. Thus the wind turbines’ rotor solidity becomes greater and power output increases. So at a certain speed ( 36m/s), the wind turbine can adjusts itself to control the power output keeps on a certain level. And then it brakes by itself.


Author(s):  
Susan A. Frost ◽  
Kai Goebel ◽  
Léo Obrecht

Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency control to balance the trade-offs between maintaining system health and energy capture. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.


Author(s):  
Amjith Lilly RAVEENDRAN ◽  
Bavanish BALA

Energy is an important aspect for all countries. Due to the overexploitation of resources, nonrenewable resources, such as fossil fuels, are depleting day by day. This calls for alternative power sources, such as wind energy. Wind energy is a clean and inexhaustible source of energy. One of the ways of harvesting this energy is using wind turbines, which transform the kinetic energy of wind into electrical power output. Wind turbines face many problems, such as low wind hours, design issues, and so on. The main focus of this work is to find the optimum blade angle of turbine blades, in order to produce the maximum power output, even at low wind hours. In this study, CFD analysis is done on a 5 MW wind turbine blade at wind velocities 3, 12.5 and 25 m/s, which are the cut in, rated, and cut out velocities of wind turbines, respectively. The range of angles under consideration varies from 20 to 89 °. A 3D model of the blade is analyzed using ANSYS Fluent 19.0. The optimum blade angle is identified, and the characteristics of the curves of blade angles, with respect to different parameters, are obtained. HIGHLIGHTS Optimum Blade angle for better moment Pressure and velocity Characteristics at various blade angles 5MW HAWT blade moments for wind velocity of 3,12.5 and 25 m/s The maximum moment is obtained at an angle 82 degree at various wind velocities GRAPHICAL ABSTRACT


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5207 ◽  
Author(s):  
Fahed Martini ◽  
Leidy Tatiana Contreras Montoya ◽  
Adrian Ilinca

When operating in cold climates, wind turbines are vulnerable to ice accretion. The main impact of icing on wind turbines is the power losses due to geometric deformation of the iced airfoils of the blades. Significant energy losses during the wind farm lifetime must be estimated and mitigated. Finding solutions for icing calls on several areas of knowledge. Modelling and simulation as an alternative to experimental tests are primary techniques used to account for ice accretion because of their low cost and effectiveness. Several studies have been conducted to replicate ice growth on wind turbine blades using Computational Fluid Dynamics (CFD) during the last decade. While inflight icing research is well developed and well documented, wind turbine icing is still in development and has its peculiarities. This paper surveys and discusses the models, approaches and methods used in ice accretion modelling in view of their application in wind energy while summarizing the recent research findings in Surface Roughness modelling and Droplets Trajectory modelling. An An additional section discusses research on the modelling of electro-thermal icing protection systems. This paper aims to guide researchers in wind engineering to the appropriate approaches, references and tools needed to conduct reliable icing modelling for wind turbines.


Sign in / Sign up

Export Citation Format

Share Document