A Study of Power Production and Noise Generation of a Small Wind Turbine for an Urban Environment

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Andrew Hays ◽  
Kenneth W. Van Treuren

Wind energy has had a major impact on the generation of renewable energy. While most research and development focuses on large, utility-scale wind turbines, a new application is in the field of small wind turbines for the urban environment. A major design challenge for urban wind turbines is the noise generated during operation. This study examines the power production and the noise generated by two small-scale wind turbines tested in a small wind tunnel. Both rotors were designed using the blade-element momentum theory using either the NREL S823 or the Eppler 216 airfoils. Point noise measurements were taken using a microphone at three locations downstream of the turbine: 16% of the diameter (two chord lengths), 50% of the diameter, and 75% of the diameter. At each location downstream of the turbine, a vertical traverse was performed to analyze the sound pressure level (SPL) from the tip of the turbine blades down to the hub. The rotor designed with the Eppler 216 airfoil showed a 9% increase in power production and decrease of up to 7 dB(A).

Author(s):  
Andrew Hays ◽  
Kenneth Van Treuren

Wind energy has had a major impact on the generation of renewable energy. While most research and development focuses on large, utility-scale wind turbines, a new application is in the field of small wind turbines in the urban environment. A major design challenge for these urban wind turbines is the noise generated during operation. This study examines the power production and the noise generated by two small-scale wind turbines tested in a small wind tunnel. Both rotors were designed using the Blade-Element Momentum Theory and either the NREL S823 or the Eppler 216 airfoils. Point noise measurements were taken using a 1/4” microphone at three locations downstream of the turbine: 16% of the diameter (two chord lengths), 50% of the diameter, and 75% of the diameter. At each horizontal location downstream of the turbine, a vertical traverse was performed to analyze the sound pressure level from the tip of the turbine blades down to the hub. The rotor designed with the Eppler 216 airfoil showed a 9% increase in power production and decrease of up to 7 dB(A).


2020 ◽  
Author(s):  
Yassine Ouakki ◽  
Abdelaziz Arbaoui

Abstract. The accurate prediction of loadings and velocities on a wind turbine blades is essential for the design and optimization of wind turbines rotors. However, the classical BEM still suffer from an inaccurate prediction of induced velocities and loadings, even if the classical correction like stall delay effect and tip loss correction are used. For low solidity rotors, the loadings are generally over-predicted in the tip region, since the far wake expansion is not accurately accounted for in the one-dimensional (1D) momentum theory. The 1D dimensional momentum theory supposes that the far wake axial induction is equal to twice the axial induction in the rotor plane, which results in an under-estimation of the axial induction factor in the tip region. Considering the complex nature of the flow around a rotating blade, the accurate estimation of 3D effects is still challenging, since most stall delay models still often tend to under-predict or over-predict the loadings near the root region. As for the solution method for the classical BEM equation, the induced velocities are computed accounting for the drag force. However, according to the Kutta-Joukowski theorem, the induced velocities on a blade element are only created by lift force. Accounting for drag force when solving the BEM will result in an over-estimation of the axial induction factor, while the tangential induction factor is under-estimated. To improve the accuracy of the BEM method, in this paper, the 1D momentum theory is corrected using a new far wake expansion model to take into account the radial flow effect. The blade element theory is corrected for three-dimensional effects through an improved stall delay model. An improved solution method for the BEM equations respecting the Kutta-Joukowski theorem is proposed. The improved BEM model is used to estimate the aerodynamic loads and velocities on the National Renewable Energy Laboratory Phase VI rotor blades. The results of this study show that the proposed BEM model gives an accurate prediction of the loads and velocities compared to the classical BEM model.


2021 ◽  
pp. 1-25
Author(s):  
K.A.R. Ismail ◽  
Willian Okita

Abstract Small wind turbines are adequate for electricity generation in isolated areas to promote local expansion of commercial activities and social inclusion. Blade element momentum (BEM) method is usually used for performance prediction, but generally produces overestimated predictions since the wake effects are not precisely accounted for. Lifting line theory (LLT) can represent the blade and wake effects more precisely. In the present investigation the two methods are analyzed and their predictions of the aerodynamic performance of small wind turbines are compared. Conducted simulations showed a computational time of about 149.32 s for the Gottingen GO 398 based rotor simulated by the BEM and 1007.7 s for simulation by the LLT. The analysis of the power coefficient showed a maximum difference between the predictions of the two methods of about 4.4% in the case of Gottingen GO 398 airfoil based rotor and 6.3% for simulations of the Joukowski J 0021 airfoil. In the case of the annual energy production a difference of 2.35% is found between the predictions of the two methods. The effects of the blade geometrical variants such as twist angle and chord distributions increase the numerical deviations between the two methods due to the big number of iterations in the case of LLT. The cases analyzed showed deviations between 3.4% and 4.1%. As a whole, the results showed good performance of both methods; however the lifting line theory provides more precise results and more information on the local flow over the rotor blades.


2021 ◽  
pp. 1-16
Author(s):  
Ojing Siram ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Abstract The small-scale horizontal-axis wind turbines (SHAWTs) have emerged as the promising alternative energy resource for the off-grid electrical power generation. These turbines primarily operate at low Reynolds number, low wind speed, and low tip speed ratio conditions. Under such circumstances, the airfoil selection and blade design of a SHAWT becomes a challenging task. The present work puts forward the necessary steps starting from the aerofoil selection to the blade design and analysis by means of blade element momentum theory (BEMT) for the development of four model rotors composed of E216, SG6043, NACA63415, and NACA0012 airfoils. This analysis shows the superior performance of the model rotor with E216 airfoil in comparison to other three models. However, the subsequent wind tunnel study with the E216 model, a marginal drop in its performance due to mechanical losses has been observed.


2021 ◽  
Vol 118 (42) ◽  
pp. e2111461118
Author(s):  
Linyue Gao ◽  
Hui Hu

A field campaign was carried out to investigate ice accretion features on large turbine blades (50 m in length) and to assess power output losses of utility-scale wind turbines induced by ice accretion. After a 30-h icing incident, a high-resolution digital camera carried by an unmanned aircraft system was used to capture photographs of iced turbine blades. Based on the obtained pictures of the frozen blades, the ice layer thickness accreted along the blades’ leading edges was determined quantitatively. While ice was found to accumulate over whole blade spans, outboard blades had more ice structures, with ice layers reaching up to 0.3 m thick toward the blade tips. With the turbine operating data provided by the turbines’ supervisory control and data acquisition systems, icing-induced power output losses were investigated systematically. Despite the high wind, frozen turbines were discovered to rotate substantially slower and even shut down from time to time, resulting in up to 80% of icing-induced turbine power losses during the icing event. The research presented here is a comprehensive field campaign to characterize ice accretion features on full-scaled turbine blades and systematically analyze detrimental impacts of ice accumulation on the power generation of utility-scale wind turbines. The research findings are very useful in bridging the gaps between fundamental icing physics research carried out in highly idealized laboratory settings and the realistic icing phenomena observed on utility-scale wind turbines operating in harsh natural icing conditions.


Machines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 35 ◽  
Author(s):  
Francesco Castellani ◽  
Davide Astolfi ◽  
Mauro Peppoloni ◽  
Francesco Natili ◽  
Daniele Buttà ◽  
...  

In the recent years, distributed energy production has been one of the main research topics about renewable energies. The decentralization of electric production from wind resources raises the issues of reducing the size of generators, from the MW scale of industrial wind farm turbines to the kW scale, and possibly employing them in urban areas, where the wind flow is complex and extremely turbulent because of the presence of buildings and obstacles. On these grounds, the use of small-scale vertical axis small wind turbines (VASWT) is a valid choice for on-site generation (OSG), considering their low sensitivity with respect to turbulent flow and that there is no need to align the turbine with wind direction, as occurs with horizontal axis small wind turbines (HASWT). In addition, VASWTs have a minor acoustic impact with respect to HASWTs. The aim of this paper is to study the interactions that take place between a 1.2 kW, vertical axis, Darrieus VASWT turbine and a small, experimental building, in order to analyze the noise and the vibrations transmitted to the structure. One method to damp the vibrations is then assessed through spectral analysis of data acquired through accelerometers located both in the mast of the wind turbine and at the building walls. The results confirm the usefulness of dampers to increase the building comfort regarding vibrations.


Sign in / Sign up

Export Citation Format

Share Document