Human amniotic epithelial cells inhibit activation and pro-inflammatory cytokines production of naive CD4+ T cells from women with unexplained recurrent spontaneous abortion

2018 ◽  
Vol 18 (2) ◽  
pp. 182-188 ◽  
Author(s):  
Hossein Motedayyen ◽  
Abbas Rezaei ◽  
Amir-Hassan Zarnani ◽  
Nader Tajik
2021 ◽  
Author(s):  
Fanny Lebreton ◽  
Charles H. Wassmer ◽  
Kevin Bellofatto ◽  
Lisa Perez ◽  
Véronique Othenin-Girard ◽  
...  

Abstract Inhibiting pro-inflammatory cytokine activity can reverse inflammation mediated dysfunction of islet grafts. Human amniotic epithelial cells (hAECs) possess regenerative, immunomodulatory and anti-inflammatory properties. We hypothesized that hAECs could protect islets from cellular damage induced by pro-inflammatory cytokines. To verify our hypothesis hAECs monocultures, rat islets (RI), or RI-hAEC co-cultures where exposed to a pro-inflammatory cytokine cocktail (Interferon γ: IFN-γ, Tumor necrosis factor α: TNF-α and Interleukin-1β: IL-1β). The secretion of anti-inflammatory cytokines and gene expression changes in hAECs and viability and function of RI were evaluated. The expression of non-classical Major Histocompatibility Complex (MHC) class I molecules by hAECs cultured with various IFN-γ concentrations were assessed. Exposure to the pro-inflammatory cocktail significantly increased the secretion of the anti-inflammatory cytokines IL6, IL10 and G-CSF by hAECs, which was confirmed by upregulation of IL6, and IL10 gene expression. HLA-G, HLA-E and PDL-1 gene expression was also increased. This correlated with an upregulation of STAT1, STAT3 and NF-κB1gene expression levels. RI co-cultured with hAECs maintained normal function after cytokine exposure compared to RI cultured alone, and showed significantly lower apoptosis rate. Our results show that exposure to pro-inflammatory cytokines stimulates secretion of anti-inflammatory and immunomodulatory factors by hAECs through the JAK1/2 – STAT1/3 and the NF-κB1 pathways, which in turn protects islets against inflammation-induced damages. Integrating hAECs in islet transplants appears as a valuable strategy to achieve to inhibit inflammation mediated islet damage, prolong islet survival, improve their engraftment and achieve local immune protection allowing to reduce systemic immunosuppressive regimens.


2021 ◽  
Author(s):  
Fanny Lebreton ◽  
Charles H. Wassmer ◽  
Kevin Bellofatto ◽  
Lisa Perez ◽  
Véronique Othenin-Girard ◽  
...  

Abstract Inhibiting pro-inflammatory cytokine activity can reverse inflammation mediated dysfunction of islet grafts. Human amniotic epithelial cells (hAECs) possess regenerative, immunomodulatory and anti-inflammatory properties. We hypothesized that hAECs could protect islets from cellular damage induced by pro-inflammatory cytokines. To verify our hypothesis hAECs monocultures, rat islets (RI), or RI-hAEC co-cultures where exposed to a pro-inflammatory cytokine cocktail (Interferon γ: IFN-γ, Tumor necrosis factor α: TNF-α and Interleukin-1β: IL-1β). The secretion of anti-inflammatory cytokines and gene expression changes in hAECs and viability and function of RI were evaluated. The expression of non-classical Major Histocompatibility Complex (MHC) class I molecules by hAECs cultured with various IFN-γ concentrations were assessed. Exposure to the pro-inflammatory cocktail significantly increased the secretion of the anti-inflammatory cytokines IL6, IL10 and G-CSF by hAECs, which was confirmed by upregulation of IL6, and IL10 gene expression. HLA-G, HLA-E and PDL-1 gene expression was also increased. This correlated with an upregulation of STAT1, STAT3 and NF-κB1gene expression levels. RI co-cultured with hAECs maintained normal function after cytokine exposure compared to RI cultured alone, and showed significantly lower apoptosis rate. Our results show that exposure to pro-inflammatory cytokines stimulates secretion of anti-inflammatory and immunomodulatory factors by hAECs through the JAK1/2 – STAT1/3 and the NF-κB1 pathways, which in turn protects islets against inflammation-induced damages. Integrating hAECs in islet transplants appears as a valuable strategy to achieve to inhibit inflammation mediated islet damage, prolong islet survival, improve their engraftment and achieve local immune protection allowing to reduce systemic immunosuppressive regimens.


2020 ◽  
Vol 103 (5) ◽  
pp. 1012-1017
Author(s):  
Qianqian Liang ◽  
Lingxia Tong ◽  
Liping Xiang ◽  
Sujuan Shen ◽  
Chenhuan Pan ◽  
...  

Abstract The two-way communication between the mother and the fetus is accomplished by immune cells. CD8+ T cells of normal pregnant (NP) women express progesterone receptor (PR). Binding of PR to progesterone (P) and the production of progesterone-induced blocking factor (PIBF) can aid immune escape, which is an important factor in the maternal immune response. We detected the proportion of CD8+ T cells and the expression of the surface costimulatory molecules BTLA, TIGIT, ICOS, and PD-1 in peripheral blood and decidual tissues of women with unexplained recurrent spontaneous abortion (URSA) and in NP women. All patients were at 8 -10 weeks of gestation. The results showed that there was no change in the proportions of CD8+ T cells in peripheral blood and decidual tissues of URSA patients compared to those of NP women. In peripheral blood, compared with the NP group, the URSA group showed decreased expression of BTLA + CD8+ T cells and the difference was statistically significant, but there was no difference between the groups in terms of TIGIT + CD8+, PD-1 + CD8+, and ICOS + CD8+ T cells. There was no change in the levels of TIGIT + CD8+, PD-1 + CD8+, ICOS + CD8+, and BTLA + CD8+ T cells in decidual tissue. These data confirm that the number of CD8+ T cells in peripheral blood and decidual tissue is not the main factor leading to the pathogenesis of URSA, and other immune cells may play an important role in URSA, but this hypothesis needs further exploration and research.


Author(s):  
Parya Basimi ◽  
Firouzeh Akbari Asbagh ◽  
Mir Saeed Yekaninejad ◽  
Mojgan Asadi ◽  
Ali Dabbagh ◽  
...  

Thyroid autoimmunity, being recognized by the presence of auto-antibodies against thyroid peroxidase (TPO) and thyroglobulin, has known to be associated with increased risk of recurrent spontaneous abortion (RSA), even in euthyroid subjects. There was no robust evidence regarding T cell deviations in anti-TPO positive RSA patients. The aim of this study was to investigate if the numbers of different CD4+T  subsets were different in women who experienced RSA and have an anti-TPO antibody from those without autoantibody and normal fertile women or not. In this study, peripheral blood samples were obtained from three groups of women (age: 20-35 years) including RSA anti-TPO positive (n=17), RSA anti-TPO negative (n=27), and fertile (n=29) groups. The frequency of T helper (Th) 1, Th2, Th17, and regulatory T cells (Tregs) and also, the proportions of Th1/Th2 and Th17/Treg were measured by flow cytometry and compared between groups in different menstrual phases. The findings indicated elevated levels of Th1 in anti-TPO+ RSA in comparison with those without anti-TPO (p-value: 0.004), exclusively in the luteal phase. Other T cell subsets were different only between RSA and control groups. Also, the Th1/Th2 and Th17/Treg ratios were increased in both RSA groups compared to fertile women. The only subset of CD4+ T cell different between RSA groups (i.e. with and without anti-TPO) was Th1 cells. Other CD4+ T cells’ deviations including Th2, Th17, and Treg cells could be related to the presence of abortion, regardless of the underlying thyroid autoimmunity state.


2019 ◽  
Author(s):  
Judith De Arcos Jimenez ◽  
Mariana Ruiz Briseño ◽  
Moises Ramos Solano ◽  
Jaime Andrade-Villanueva ◽  
Luz Gonzalez-Hernandez ◽  
...  

2009 ◽  
Vol 145 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Shahram Y. Kordasti ◽  
Behdad Afzali ◽  
Ziyi Lim ◽  
Wendy Ingram ◽  
Janet Hayden ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3282-3282
Author(s):  
Chao Ma ◽  
Lin Lin ◽  
Henry Erlich ◽  
Elizabeth Trachtenberg ◽  
Stephan Targan ◽  
...  

Abstract Abstract 3282 Innate lymphocytes can play both protective and pathogenic roles in chronic inflammatory disorders. Recently, killer-cell immunoglobulin-like receptors (KIRs) and its cognitive ligands - human leukocyte antigen (HLA) class I molecules - were identified as genetic risk factors for Crohn's Disease (CD), a common inflammation symptom. Natural killer (NK) cells, the major KIR-expressing cell type, can be educated through KIR-HLA ligation. To uncover the cellular mechanism that determines CD susceptibility, we utilize a novel single-cell functional proteomics microchip and other highly-multiplexed assays (Ma, C. et al. Nature Medicine, 2011, 17, 738–743). We show that, in genetically pertinent individuals, natural killer (NK) cells are functionally reprogrammed to modulate the activation threshold of CD4+ T cells, a major cellular mediator of chronic inflammation. Genetic study of 455 CD patients bearing the AA haplotype identifies that the HLA-C1/C1 allotype, ligand of the KIR2DL3 receptor, is significantly enriched (p<0.0001). Moreover, when evaluating the secretion of 20 cytokines from single purified NK cells that are retrieved from the peripheral blood, we observe that NK cells expressing KIR2DL3 were strongly polarized to robustly produce a myriad of pro-inflammatory cytokines and chemoattractants in copious amounts. Comparing to those from other subjects, NK cells from HLA-C1/C1 subjects produce significantly increased level (p<0.05) of 11 soluble mediators, including TNF, INF-g, ILs, and CCLs. Furthermore, among all NK cells within the HLA-C1/C1 subjects, NK cells expressing KIR2DL3 receptors are the most potent to produce cytokines (2-log higher) and exhibit the highest polyfunctionality. These observations are also confirmed by intracellular staining and ELISA assay of NK cell culture media. Most importantly, the KIR-educated NK cells can strongly augment the activation and proliferation of CD4+ T cells. As shown in autologous NK and CD4+ T cell co-culture assay, CD4+ T cells proliferate aggressively in the presence of NK cells in a dose-dependent fashion (R2=0.99). NK surface costimulatory molecules blockage and NK-CD4+ T cells transwell-separation experiments indicate that this augmentation is not contact-dependent. On the other hand, NK cytokine depletion and ELISA essay of the co-culture media confirmed that soluble factors, such as ILs, IFN-g and TNF, activate CD4+ T cells. KIR2DL3 signaling-mediated education licenses NK cells the capacity to secrete large amounts of pro-inflammatory cytokines and chemokines, which in turn lowers activation threshold of CD4+ T cells and increases susceptibility to chronic inflammation disorders. Our study establishes, for the first time, an immunologic cellular mechanism that explains the KIR genetics-based susceptibility to CD and other chronic inflammatory syndromes. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document