scholarly journals Effect of actinorhizal root exudates on the proteomes of Frankia soli NRRL B-16219, a strain colonizing the root tissues of its actinorhizal host via intercellular pathway

2021 ◽  
pp. 103900
Author(s):  
Abdellatif Gueddou ◽  
Indrani Sarker ◽  
Arnab Sen ◽  
Faten Ghodhbane-Gtari ◽  
David R. Benson ◽  
...  
Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1551-1558 ◽  
Author(s):  
Xia Li ◽  
Hai-Jing Hu ◽  
Jing-Yu Li ◽  
Cong Wang ◽  
Shuang-Lin Chen ◽  
...  

Root-knot nematodes (Meloidogyne spp.) cause serious crop losses worldwide. The colonization of tomato roots by endophytic bacteria Bacillus cereus BCM2 can greatly reduce Meloidogyne incognita damage, and tomato roots carrying BCM2 were repellent to M. incognita second-stage juveniles (J2). Here, the effects of BCM2 colonization on the composition of tomato root exudates was evaluated and potential mechanisms for BCM2-mediated M. incognita control explored using a linked twin-pot assay and GC-MS. On water agar plates, J2 preferentially avoided filter paper treated with tomato root exudates (organic phase only) from plants inoculated with BCM2, visiting these 67.1% less than controls. In a linked twin-pot assay, BCM2 treatment resulted in a 42.0% reduction in the number of nematodes in the soil, a 43.3% reduction in the number of galls and a 47.7% decrease in the density of M. incognita in root tissues. Analysis of root exudate composition revealed that BCM2 inoculation increased the number of components in exudates. Among these, 2,4-di-tert-butylphenol, 3,3-dimethyloctane, and n-tridecane secretions markedly increased. In repellency trials on water agar plates, J2 avoided 2,4-di-tert-butylphenol, n-tridecane, and 3,3-dimethyloctane at concentrations of 4 mmol/liter. In a linked twin-pot assay, inoculation with 2,4-di-tert-butylphenol or 3,3-dimethyloctane reduced the number of nematodes in the soil (by 54.9 and 70.6%, respectively), the number of galls (by 53.7 and 52.4%), and the number of M. incognita in root tissues (by 67.5 and 36.3%). BCM2 colonization in tomato roots affected the composition of root exudates, increasing the secretion of substances that appear to be repellent, thus decreasing M. incognita J2 infection of roots.


1996 ◽  
Vol 23 (1) ◽  
pp. 93 ◽  
Author(s):  
CGR Lawson ◽  
BG Rolfe ◽  
MA Djordjevic

Rapid induction of chalcone synthase (predominantly CHSS) gene expression occurs within 6 h following the inoculation of Rhizobium leguminosarum bv. trifolii strain ANU843 on Trifolium subterraneum or wounding of plants (C. G. R. Lawson, M. A. Djordjevic, J. J. Weinman and B. G. Rolfe. 1994. Molecular Plant-Microbe Interactions 7, 498-507). Experiments were conducted under the same conditions to examine the time of onset of synthesis and excretion of flavonoids that might result from this early CHS expression. Flavonoids in root tissues and root exudates were examined by HPLC analysis and the ability of fractionated and unfractionated material to induce nodulation gene expression in Rhizobium measured. There were no detectable changes in nod-gene-inducing activity of individual HPLC fractions of root exudates of 1 day dark-grown roots after Rhizobium inoculation. In contrast, after 3 days exposure to Rhizobium, analysis of specific HPLC fractions showed the presence of an additional nod-gene-inducing compound which the data indicate was 4′,7-dihydroxyflavone. A different and additional nod gene inducer was found in inoculated 5 day samples of root exudate of light-grown plants indicating that light exposure changes the HPLC profiles as well as the nod-gene-inducing compound(s). Exudates collected from wounded plants were considerably different from those from Rhizobium-inoculated and uninoculated plants and contained no detectable nod gene inducers. The late detection (at day 3) of Rhizobium-induced flavonoid excretion may occur too late to be directly correlated with the observed expression of CHS 6 h after inoculation. In addition, the data suggest that although the CHS5 promotor responds to both wounding and Rhizobium inoculation, the biochemical consequences of CHS5 induction resulting from these treatments are different.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 923 ◽  
Author(s):  
Lucas Caiubi Pereira ◽  
Carolina Bertuzzi Pereira ◽  
Larissa Vinis Correia ◽  
Thaisa Cavalieri Matera ◽  
Rayssa Fernanda dos Santos ◽  
...  

Corn has shown different degrees of positive response to inoculation with the nitrogen- fixing bacteria of the genera Azospirillum. Part of it has been attributed to the plant genotypic variation, including the root exudates, that are used by the bacteria as energy source. In this study, we grew two corn hybrids that differ for their response to Azospirillum, to investigate the effect of different exudates profiles on the bacteria growth and nitrogenase activity. Employing high performance liquid chromatography, we identified nine amino acids (asparagine, aspartic acid, serine, glutamic acid, valine, phenylalanine, threonine, tryptophan and alanine), six sugars (glucose, sucrose, xylose, arabinose, fructose and galactose) and four organic acids (citrate, malate, succinate and fumarate). The less responsive corn genotype showed reduced plant growth (root volume, shoot dry mass and shoot N content), a lower concentration of Azospirillum cells within the root tissues, a higher content of asparagine and glucose and a reduced amount of metabolites that serve as bacterial energy source (all organic acids + five sugars, excluding glucose). The genotypes did not interfere in the ability of Azospirillum to colonize the substrate, but the metabolites released by the less responsive one reduced the nitrogenase activity.


2009 ◽  
Vol 17 (1) ◽  
pp. 64-69
Author(s):  
Yong LI ◽  
Xiao-Fang HUANG ◽  
Wan-Long DING
Keyword(s):  

Author(s):  
Heng‐Yu Hu ◽  
Hong Li ◽  
Min‐Min Hao ◽  
Ya‐Nan Ren ◽  
Meng‐Kun Zhang ◽  
...  

1972 ◽  
Vol 52 (4) ◽  
pp. 643-649 ◽  
Author(s):  
R. A. HAMLEN ◽  
F. L. LUKEZIC ◽  
J. R. BLOOM

Influence of clipping height on neutral carbohydrate levels in root exudates of alfalfa grown gnotobiotically was investigated by gas-chromatographic and mass-spectral techniques. Exudates were obtained from plants that were lightly clipped (removal of flower buds), intermediately clipped (15 cm), and severely clipped (removal of all but four mature leaves). Glucose, inositol, sucrose, and four unidentified (U) components were detected. Fluctuations in the level of sugars were observed in exudates from two sampling periods. Glucose and U1 were most concentrated under light clipping. Levels of inositol and sucrose were maximum under intermediate clipping. Amounts of U3 were greatest from severely clipped plants, whereas levels of U5 remained constant at all cuttings. Concentration of U4 was lowest under severe clipping. U2, present in exudates from seedling plants, was not detected. Quantities of sugars released per gram of dry weight of root tissue were greater under severe clipping. U1 was the major component, with glucose, inositol, and sucrose minor components of the total sugars.


2021 ◽  
Vol 203 (9) ◽  
pp. 5599-5611
Author(s):  
Chisato Matsushima ◽  
Matthew Shenton ◽  
Ayaka Kitahara ◽  
Jun Wasaki ◽  
Akira Oikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document