Test interval optimization of safety systems of nuclear power plant using fuzzy-genetic approach

2007 ◽  
Vol 92 (7) ◽  
pp. 895-901 ◽  
Author(s):  
K. Durga Rao ◽  
V. Gopika ◽  
H.S. Kushwaha ◽  
A.K. Verma ◽  
A. Srividya
Author(s):  
Emil Kichev ◽  
Ivan Ivanov ◽  
Kaliopa Mancheva ◽  
Yasen Petrov ◽  
Vesselina Vladimirova ◽  
...  

Refueling outages at the Kozloduy Nuclear Power Plant (KNPP) Units 5 and 6 are used to perform annual repairs and preventive maintenance activities, piping inspections, and test activities. A refueling outage at KNPP typically requires 60 days and occurs on an annual basis. Testing of safety systems at the KNPP Units 5 and 6 is an extensive exercise that results in multiple actuations of all components during each test and a relatively high number of component actuations each year. This results in equipment wear out issues that can lead to considerable component replacement and/or refurbishment. Numerous piping in-service inspections are conducted in locations where there has been no industry or plant-specific indications or failures, leading to unnecessary personnel exposure. KNPP is interested in using risk-informed (RI) approaches to reduce refueling outage length, piping inspections, testing, and exposure. KNPP is a four-loop Voda-Vodyanoi Energetichesky Reaktor (VVER) with a power level of 1000 MWe. Safety systems consist of three trains. The KNPP at-power probabilistic safety assessment (PSA) model includes internal and external events. It addresses the full range of events leading to core damage frequency (CDF) and includes a simplified level 2 model leading to large early release frequency (LERF). The RI approach, as defined in the U.S. Nuclear Regulatory Commission’s (NRC’s) risk-informed (RI) Regulatory Guides (RGs) 1.174, 1.177, and 1.178, was used in this program. The specific approach used for risk-informed in-service inspection (RI-ISI) is based on the Pressurized Water Reactor Owner’s Group methodology. The overall approach for each of the three applications used a multi-step process which included the following: identification of systems to address; identification of alternatives to current maintenance, inspection, and testing practices; a risk assessment of the proposed alternatives; an assessment of the impact of the changes on deterministic considerations; identification of monitoring requirements; and an assessment of the economic benefits. The RI-ISI program also considered the impact of the changes on personnel exposure. The overall approach made extensive use of data assessments, reliability methods, and risk assessments. The results demonstrated that the proposed changes in maintenance, in-service inspection, and testing programs have a small impact on risk, based on CDF and LERF. In addition, the proposed changes provide significant benefits in terms of reduced outage time, in-service inspections, testing requirements, and personnel exposure. The economic analysis demonstrated that changes to the maintenance program provide the largest benefit followed by the changes to the in-service inspection program and then the changes to the testing program.


2019 ◽  
Vol 4 (6) ◽  
pp. 155-159
Author(s):  
A.H.M. Iftekharul Ferdous ◽  
T. H. M Sumon Rashid ◽  
Md Asaduzzaman Shobug ◽  
Tanveer Ahmed ◽  
Nitol Kumar Dutta

Bangladesh is a developing country and it’s increasing economy can be maintained by providing sufficient amount of electric power supply. Therefore government is initiating Rooppur nuclear power project is one of them which is needed to be sited beside a vast amount of water source, lowest populated area and away from the locality to reduce the damage caused by any nuclear accidents. In this thesis paper we have shown that, the the dangers of residing errors of Rooppur nuclear power plant and give a proposal to go for onshore nuclear power plant in Bangladesh with two proposed designs of passive safety systems PSS-I & PSS-II. These systems will give safety to the power plants in the case of plant blackout during accidents.


Author(s):  
Antonio Ciriello ◽  
Stefan Kümmerling

This paper briefly introduces the safety instrumentation and control (I&C) system (Teleperm® XS) designed for the nuclear power plant in Mochovce units 3 and 4 (Slovak Republic). The overall I&C architecture of the concerned nuclear power plant is shortly introduced as well. An overview is given on the different test phases for the hardware and software I&C modules. The integrated I&C test concept and its implementation is presented as well as the description of the integrated test phase in the test bay in Erlangen (Germany). After a successful completion of the integrated test phase for unit 3, the Factory Acceptance Test (FAT) and the erection phase have been started for the concerned I&C safety systems (e.g., the Reactor Protection System and the Reactor Power Limitation System). This paper will also present the significant advantages and specifics of performing the concerned I&C tests in the aforementioned test bay.


Author(s):  
Paridhi Goel ◽  
Arun K. Nayak

In an extreme situation, as happened in Fukushima nuclear power plant, the failure of multiple safety systems may lead to severe core damage and melt relocation. This may be accompanied by production of large amount of steam which may result in the over-pressurization of the containment. Another associated concern is that the exposed core melt is highly radioactive which if exposed to the atmosphere can ruthlessly deteriorate the quality of environment and living beings. The radioactive materials present in the containment can be in vapor form or aerosol form. The containment of a nuclear power plant is therefore the final shielding to prevent the release of radioactive products to the environment. Therefore, the installation of Filtered Containment Venting system (FCVS) is mandatory in a nuclear reactor which actuates passively to depressurize the containment. Additionally it assists in the retention of radionuclides in the containment. The FCVS consists of venturi scrubbers submerged in a pool of scrubbing liquid along with a demister housed in a scrubber tank. The performance of venturi scrubber is dependent on the interaction of the contaminated air stream from the nuclear reactor with the scrubbing liquid. This represents a multi-field and multi-fluid system. The present analysis investigates this system through a computational framework in which air stream is solved using Eulerian framework while the scrubbing liquid is tracked through Lagrangian framework. The collection efficiency of aerosols is modeled assuming impaction to be the predominant mechanism.


Atomic Energy ◽  
2010 ◽  
Vol 109 (2) ◽  
pp. 81-87 ◽  
Author(s):  
G. A. Ershov ◽  
Yu. L. Ermakovich ◽  
M. A. Kozlov ◽  
M. A. Parfentiev ◽  
A. I. Kalinkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document