scholarly journals Effect of shot peening on the fatigue properties of nickel-based superalloy GH4169 at high temperature

2018 ◽  
Vol 11 ◽  
pp. 452-460 ◽  
Author(s):  
Xiaohui Zhao ◽  
Hongyang Zhou ◽  
Yu Liu
2005 ◽  
Vol 71 (707) ◽  
pp. 1051-1057 ◽  
Author(s):  
Etsuo TAKEUCHI ◽  
Saburo MATSUOKA ◽  
Koichi OKITA ◽  
Syuusuke HORI

Alloy Digest ◽  
1987 ◽  
Vol 36 (7) ◽  

Abstract AL TECH POTOMAC A has well-balanced strength and toughness which make it especially suitable for a wide variety of hot-die steel applications, including those involving severe coolants. Its outstanding mechanical properties make it useful for many non-tooling requirements such as aerospace components. For more specialized needs, the manufacturer offers special melting processes that enhance this steel's fatigue properties and transverse tensile ductility. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, and machining. Filing Code: TS-478. Producer or source: AL Tech Specialty Steel Corporation.


Alloy Digest ◽  
1998 ◽  
Vol 47 (2) ◽  

Abstract Incoloy Alloy 864 is a high performance alloy developed specifically for automotive exhaust system flexible couplings and other exhaust applications. The alloy has a good combination of oxidation and corrosion resistance, with good mechanical strength, stability, and fatigue properties. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on high temperature performance and corrosion resistance as well as joining. Filing Code: SS-708. Producer or source: Inco Alloys International Inc.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Mateusz Kopec ◽  
Dominik Kukla ◽  
Xin Yuan ◽  
Wojciech Rejmer ◽  
Zbigniew L. Kowalewski ◽  
...  

In this paper, mechanical properties of the as-received and aluminide layer coated MAR 247 nickel based superalloy were examined through creep and fatigue tests. The aluminide layer of 20 µm was obtained through the chemical vapor deposition (CVD) process in the hydrogen protective atmosphere for 8 h at the temperature of 1040 °C and internal pressure of 150 mbar. A microstructure of the layer was characterized using the scanning electron microscopy (SEM) and X-ray Energy Dispersive Spectroscopy (EDS). It was found that aluminide coating improve the high temperature fatigue performance of MAR247 nickel based superalloy at 900 °C significantly. The coated MAR 247 nickel based superalloy was characterized by the stress amplitude response ranging from 350 MPa to 520 MPa, which is twice as large as that for the uncoated alloy.


Vacuum ◽  
2021 ◽  
pp. 110152
Author(s):  
Lijun Xian ◽  
Haibo Zhao ◽  
Guang Xian ◽  
Chencheng Wang ◽  
Hong He

Sign in / Sign up

Export Citation Format

Share Document