scholarly journals Aluminide Thermal Barrier Coating for High Temperature Performance of MAR 247 Nickel Based Superalloy

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Mateusz Kopec ◽  
Dominik Kukla ◽  
Xin Yuan ◽  
Wojciech Rejmer ◽  
Zbigniew L. Kowalewski ◽  
...  

In this paper, mechanical properties of the as-received and aluminide layer coated MAR 247 nickel based superalloy were examined through creep and fatigue tests. The aluminide layer of 20 µm was obtained through the chemical vapor deposition (CVD) process in the hydrogen protective atmosphere for 8 h at the temperature of 1040 °C and internal pressure of 150 mbar. A microstructure of the layer was characterized using the scanning electron microscopy (SEM) and X-ray Energy Dispersive Spectroscopy (EDS). It was found that aluminide coating improve the high temperature fatigue performance of MAR247 nickel based superalloy at 900 °C significantly. The coated MAR 247 nickel based superalloy was characterized by the stress amplitude response ranging from 350 MPa to 520 MPa, which is twice as large as that for the uncoated alloy.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3824
Author(s):  
Dominik Kukla ◽  
Mateusz Kopec ◽  
Kehuan Wang ◽  
Cezary Senderowski ◽  
Zbigniew L. Kowalewski

In this paper, the fatigue performance of the aluminide layer-coated and as-received MAR 247 nickel superalloy with three different initial microstructures (fine grain, coarse grain and column-structured grain) was monitored using nondestructive, eddy current methods. The aluminide layers of 20 and 40 µm were obtained through the chemical vapor deposition (CVD) process in the hydrogen protective atmosphere for 8 and 12 h at the temperature of 1040 °C and internal pressure of 150 mbar. A microstructure of MAR 247 nickel superalloy and the coating were characterized using light optical microscopy (LOM), scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). It was found that fatigue performance was mainly driven by the initial microstructure of MAR 247 nickel superalloy and the thickness of the aluminide layer. Furthermore, the elaborated methodology allowed in situ eddy current measurements that enabled us to localize the area with potential crack initiation and its propagation during 60,000 loading cycles.


2013 ◽  
Vol 592-593 ◽  
pp. 461-464 ◽  
Author(s):  
Simona Hutařová ◽  
Karel Obrtlík ◽  
Martin Juliš ◽  
Ladislav Čelko ◽  
Martina Hrčková ◽  
...  

The work is focused on the study of degradation of ZrO2 stabilized by Y2O3 (YSZ) thermal barrier-coating system with CoNiCrAlY bond coat applied on cast polycrystalline nickel-based superalloy Inconel 713LC. Cylindrical specimens in as-coated conditions were cyclically strained under strain control with constant total strain amplitude in symmetrical cycle at high temperature (900 °C) in air. Coating system YSZ with CoNiCrAlY bond coat were prepared by APS method on blasted surface. The microstructure of TBC was characterized with scanning electron microscopy and energy dispersion X-ray analysis. The coating thickness and hardness profile was measured. Fracture surface, surface relief and polished sections parallel to the specimen axis were examined to study damage mechanisms in coatings under cyclic loading at high temperature. It was find that initiation of the fatigue crack usually occurs on interface YSZ-CoNiCrAlY and the trajectory of the further crack propagation was documented.


2006 ◽  
Vol 514-516 ◽  
pp. 18-22
Author(s):  
Shibin Zhang ◽  
Z. Hu ◽  
Leandro Raniero ◽  
X. Liao ◽  
Isabel Ferreira ◽  
...  

A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 Å) gold film was evaporated on the half area of the a- SiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100 0C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 370 ◽  
Author(s):  
Kaijin Huang ◽  
Wei Li ◽  
Kai Pan ◽  
Xin Lin ◽  
Aihua Wang

In order to reduce the difficulty and cost of manufacturing and improve the high temperature oxidation and thermal shock properties of nickel-based superalloy, a thin La2Zr2O7 thermal barrier coating without bond coat was successfully prepared by laser-cladding using La2Zr2O7 powders on a nickel-based superalloy substrate. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods were used to characterize the microstructure of the coating. The high temperature oxidation and thermal shock properties of the coating were evaluated by the air isothermal oxidation method at 1100 °C for 110 h and thermal cycling method at 25~1100 °C, respectively. The results show that the coating is mainly composed of La2Zr2O7 phase. The oxidation weight gain rate of the coating is about two-thirds of that of the substrate, and the first crack thermal shock lifetime of the coating is about 1.67 times of that of the substrate. The oxidation products of the coating are mainly Fe2O3, Cr2O3, NiCr2O4, Nb2O5 and La2Zr2O7. The existence of La2Zr2O7 phase in the coating is the main reason for the improvement of its oxidation resistance at 1100 °C and its thermal shock resistance at 25~1100 °C.


2013 ◽  
Vol 58 (3) ◽  
pp. 697-701 ◽  
Author(s):  
M. Zielińska ◽  
M. Zagula-Yavorska ◽  
J. Sieniawski ◽  
R. Filip

Abstract An investigation was conducted to synthesize βNiAl coating on the nickel based superalloy Mar M247 in a chemical vapor deposition process (CVD). The low activity process of aluminizing was carried out for 8 hours at the temperature 1050°C. Surface morphology and cross-section microstructure of the diffusion coating were studied and compared by using an optical microscope, a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy and an X-ray diffractometer. It was found that aluminide coating with the thickness of 37 μm consisted of two layers: an outer one and the inner interdiffusion one. The outer layer consists of single phase βNiAl. The inner one, consisted of βNiAl phase and carbides: MC and M23C6 types which were originally present in the substrate. Cyclic oxidation test was performed at 1000°C for 1000h in the air atmosphere. The aluminized samples exhibited a small mass increase and the α- Al2O3 oxide formed during oxidation test had a good adherence to the coating. The decrease of aluminum content in the coating with the prolongation of the oxidation time and the phase transformation of βNiAl to γ’ Ni3Al and to γNi solid solution were observed. The samples without the coating showed a strong mass decrease in comparison to the coated samples.


2013 ◽  
Vol 789 ◽  
pp. 463-466 ◽  
Author(s):  
Mohammad Badaruddin ◽  
Sugiyanto Sugiyanto

The oxidation of hot-dip aluminized AISI 1020 steel coated with NaCl in static air at 700°C for a duration of time 49 h was studied by employing thermogravimetry, Scanning Electron Microscopy (SEM), Electron Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD) analysis. It was found that NaCl deposits markedly accelerated the oxidation of the AISI 1020 steel. The aluminide coating on the bare steel gives the best oxidation protection by forming continuous alumina scale (Al2O3). The degradation of aluminide layer and alumina scale on the steel are associated by chloridation/oxidation cyclic reactions. In addition, the released chlorine will be as catalytic actions and leads to the formation of loose Al2O3during corrosion.


Sign in / Sign up

Export Citation Format

Share Document