scholarly journals Proposal for experimental in vitro model to assess morphological alterations in erythrocytes exposed to 5.25% NaOCl

2016 ◽  
Vol 20 (4) ◽  
pp. e241-e245
Author(s):  
Roberto Arroyo Cervantes ◽  
Sergio Iván Cuin Macedo ◽  
Benigno Miguel Calderón Rojas ◽  
Diana Ened Rodríguez Zaragoza ◽  
Héctor Ruiz Reyes
2018 ◽  
Vol 3 ◽  
pp. 2057178X1876447 ◽  
Author(s):  
Pooja Adtani ◽  
Narasimhan Malathi ◽  
Kannan Ranganathan ◽  
Sivaswamy Lokeswari ◽  
Alan Mathew Punnoose

Aim: To explore Ocimum basilicum L. (sweet basil) and linalool for their antifibrotic activity in an arecoline-induced in vitro fibrotic model. Methods: Leaf extract of O. basilicum L. (LEOB) and linalool were used as experimental agents to test their antifibrogenic activity in vitro. Half-maximal inhibitory concentration (IC50) for arecoline, ethanolic LEOB, and linalool was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. To evaluate the antifibrotic effect of ethanolic LEOB and linalool on pretreatment, that is, both the testing agents were added to the human buccal fibroblasts (HBFs) prior to induction with arecoline, and reverse transcriptase polymerase chain reaction (RT-PCR) was carried out to study the response of transforming growth factor beta (TGFβ), collagen 1 subtype A2 (COL1A2), and collagen 3 subtype A1 (COL3A1). To appreciate the morphological alterations in HBFs on treatment with arecoline, ethanolic LEOB, and linalool, Masson’s trichrome staining was performed. Results: Arecoline enhanced fibrotic activity by upregulating TGFβ1, COL1A2, and COL3A1 levels, whereas ethanolic LEOB and linalool on pretreatment significantly downregulated the increased levels of TGFβ1, COL1A2, and COL3A1 in primary HBF cell cultures. Conclusion and implication to clinic: Both ethanolic LEOB and linalool exhibited significant antifibrotic activity in an in vitro model. Further studies in an in vitro model can help attain a foundation for an herbal formulation in gel form that can be prescribed to patients diagnosed with oral submucous fibrosis for topical application. It can also be used synergistically with Western medicine.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2011 ◽  
Vol 71 (05) ◽  
Author(s):  
M Salama ◽  
K Winkler ◽  
KF Murach ◽  
S Hofer ◽  
L Wildt ◽  
...  

2020 ◽  
Author(s):  
H Gaitantzi ◽  
C Cai ◽  
S Asawa ◽  
K Böttcher ◽  
M Ebert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document