Spatio-temporal distribution of chlorophyll-a concentration, sea surface temperature and wind speed using Aqua-Modis satellite imagery over the Savu Sea, Indonesia

Author(s):  
Max Rudolf Muskananfola ◽  
Jumsar ◽  
Anindya Wirasatriya
2020 ◽  
Vol 200 ◽  
pp. 06002
Author(s):  
Dandi Arianto Pelly ◽  
Muh Aris Marfai ◽  
Evita Hanie Pangaribowo ◽  
Akhmad Fadholi

This study aimed to identify the effect of the positive Indian Ocean Dipole (IOD) phenomenon on the spatial, temporal distribution of chlorophyll-a concentrations in the East Season in Padang Sea in 2019. The method used in this research was the Kriging analysis method applied in oceanographic parameter satellite imagery extraction point data. By applying the method, we produced the maps of the spatial distribution variation of chlorophyll-a content and Sea Surface Temperature (SST). The data of IOD events in 2019 showed the occurrence of a strong positive IOD phenomenon that caused anomaly in the Sea Surface Temperature (SST) in Padang Sea. The interpretation of Aqua-Modis level 2 satellite image data showed that the sea surface temperature during the East Season was relatively cold, which was in the minimum temperature ranging from 18.5-22°C with a normal temperature condition of 28-29°C. The minimum chlorophyll-a concentration in the East Season was 0.252 mg/m3; while the maximum value reached 18.5 mg/m3. The distribution value of chlorophyll-a concentration was 1.028 mg/m3.The RMSe Cross Validation value obtained was 0.504 for SST and 0.363 for chlorophyll-a with a mean SST of -0.0005 and mean chlorophyll-a of -0.0039.


2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Bisman Nababan ◽  
Kristina Simamora

Variability of chlorophyll-a concentration and sea surface temperature (SST) in Natuna waters were analyzed using satellite data Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR). SeaWiFS data with a resolution of 9×9 km2 and AVHRR with a resolution of 4×4 km2 were the monthly average data downloaded from NASA website. Chlorophyll-a concentrations and SST were estimated using OC4v4 and MCSST algorithms. In general, the concentration of chlorophyll-a in Natuna waters ranged between 0.11-4.92 mg/m3 with an average of 0.56 mg/m3 during the west season and 0.09-2.93 mg/m3 with an average of 0.66 mg/m3 during the east season. Chlorophyll-a concentrations were relatively high seen in coastal areas, especially around the mouth of the Kapuas, Musi, and Batang Hari rivers allegedly caused by the high nutrient intake from the mainland. SST variability in Natuna waters ranged from 23.46-30.88 °C during the west season and tended to be lower than that the east season (27.91-31.95 °C). In addition, the SST values tended to be lower in the offshore than that inshore. During the west season (Nov-Feb) and the transitional season (Apr) in the years of Elnino Southern Oscillation (ENSO), the concentration of chlorophyll-a and the SST in Natuna waters was generally higher than that in non-ENSO years. The results of wind analyses showed that ENSO caused the change of direction and speed of wind from its normal conditions.Keywords: Sea surface temperature, chlorophyll-a, Natuna waters, ENSO, SeaWiFS, AVHRR


2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Nabil Balbeid ◽  
Agus Saleh Atmadipoera ◽  
Alan Frendy Koropitan

<p class="Paragraf"><em>Madden-Julian Oscillation (MJO) is a large-scale phenomenon that occurs in equatorial area, parti-cularly Indonesia. This research aimed to investigate the MJO propagation process and studied the correlation between MJO and sea surface temperature (SST) and chlorophyll-a. Sea variables (SST and chlorophyll-a) and atmosphere variables (</em><em>outgoing longwave radiation</em><em>/OLR, 1,5 km wind,</em><em> and</em><em> surface wind) were band-pass filtered for 20-100 days period. Spectral density from OLR and 1,5 km wind (2003-2012) shows that the MJO period was dominantly occurred for </em><em>40–50</em><em> days. </em><em>Average </em><em>pro-pagation</em><em> of</em><em> </em><em> MJO</em><em> </em><em>velocity </em><em>resulted from the atmospheric variable analysis by </em><em>Hovmöller</em><em> diagram was 4,7 m/s. Cross correlation between SST and OLR in South Java and Banda Sea result</em><em>s</em><em> a strong corre-lation during MJO active phase, where </em><em>MJO too</em><em>k </em><em> place first and was then followed by</em><em> the </em><em>decreasing </em><em>SST </em><em>along the equatorial region</em><em>.</em><em> Increasing chlorophyll-a concentration occured at some areas du</em><em>-</em><em>ring MJO active phase with relatively short phase delay. </em><em>During the MJO active phase, fluctuation of wind velocity generates variation over mixed layer depth and triggers upwelling /entrainment. Nutri-ent was upwelled to the water surface and hence increase phytoplankton production and chlorophyll-a concentration.</em></p><p><em> </em><strong><em>Keywords</em></strong><em>:</em><em> Madden Julian Oscillation, OLR, </em><em>sea surface temperature, surface chlorophyll-a</em></p>


2020 ◽  
Vol 12 (13) ◽  
pp. 2150
Author(s):  
Andrea Corredor-Acosta ◽  
Náyade Cortés-Chong ◽  
Alberto Acosta ◽  
Matias Pizarro-Koch ◽  
Andrés Vargas ◽  
...  

The analysis of synoptic satellite data of total chlorophyll-a (Chl-a) and the environmental drivers that influence nutrient and light availability for phytoplankton growth allows us to understand the spatio-temporal variability of phytoplankton biomass. In the Panama Bight Tropical region (PB; 1–9°N, 79–84°W), the spatial distribution of Chl-a is mostly related to the seasonal wind patterns and the intensity of localized upwelling centers. However, the association between the Chl-a and different physical variables and nutrient availability is still not fully assessed. In this study, we evaluate the relationship between the Chl-a and multiple physical (wind, Ekman pumping, geostrophic circulation, mixed layer depth, sea level anomalies, river discharges, sea surface temperature, and photosynthetically available radiation) and chemical (nutrients) drivers in order to explain the spatio-temporal Chl-a variability in the PB. We used satellite data of Chl-a and physical variables, and a re-analysis of a biogeochemical product for nutrients (2002–2016). Our results show that at the regional scale, the Chl-a varies seasonally in response to the wind forcing and sea surface temperature. However, in the coastal areas (mainly Gulf of Panama and off central-southern Colombia), the maximum non-seasonal Chl-a values are found in association with the availability of nutrients by river discharges, localized upwelling centers and the geostrophic circulation field. From this study, we infer that the interplay among these physical-chemical drivers is crucial for supporting the phytoplankton growth and the high biodiversity of the PB region.


Sign in / Sign up

Export Citation Format

Share Document