SPATIO-TEMPORAL VARIATIONS OF SEA SURFACE TEMPERATURE, SEA SURFACE WIND AND THE CHLOROPHYLL-A CONCENTRATION IN GULF OF TONKIN

Author(s):  
Le Van Thien
2011 ◽  
Vol 29 (2) ◽  
pp. 393-399
Author(s):  
T. I. Tarkhova ◽  
M. S. Permyakov ◽  
E. Yu. Potalova ◽  
V. I. Semykin

Abstract. Sea surface wind perturbations over sea surface temperature (SST) cold anomalies over the Kashevarov Bank (KB) of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT) data during the summer-autumn period of 2006–2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August–September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 °C and wind speed lowered down to ~7 m s−1 relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of ~0.3 m s−1 on 1 °C.


2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Bisman Nababan ◽  
Kristina Simamora

Variability of chlorophyll-a concentration and sea surface temperature (SST) in Natuna waters were analyzed using satellite data Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR). SeaWiFS data with a resolution of 9×9 km2 and AVHRR with a resolution of 4×4 km2 were the monthly average data downloaded from NASA website. Chlorophyll-a concentrations and SST were estimated using OC4v4 and MCSST algorithms. In general, the concentration of chlorophyll-a in Natuna waters ranged between 0.11-4.92 mg/m3 with an average of 0.56 mg/m3 during the west season and 0.09-2.93 mg/m3 with an average of 0.66 mg/m3 during the east season. Chlorophyll-a concentrations were relatively high seen in coastal areas, especially around the mouth of the Kapuas, Musi, and Batang Hari rivers allegedly caused by the high nutrient intake from the mainland. SST variability in Natuna waters ranged from 23.46-30.88 °C during the west season and tended to be lower than that the east season (27.91-31.95 °C). In addition, the SST values tended to be lower in the offshore than that inshore. During the west season (Nov-Feb) and the transitional season (Apr) in the years of Elnino Southern Oscillation (ENSO), the concentration of chlorophyll-a and the SST in Natuna waters was generally higher than that in non-ENSO years. The results of wind analyses showed that ENSO caused the change of direction and speed of wind from its normal conditions.Keywords: Sea surface temperature, chlorophyll-a, Natuna waters, ENSO, SeaWiFS, AVHRR


2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Nabil Balbeid ◽  
Agus Saleh Atmadipoera ◽  
Alan Frendy Koropitan

<p class="Paragraf"><em>Madden-Julian Oscillation (MJO) is a large-scale phenomenon that occurs in equatorial area, parti-cularly Indonesia. This research aimed to investigate the MJO propagation process and studied the correlation between MJO and sea surface temperature (SST) and chlorophyll-a. Sea variables (SST and chlorophyll-a) and atmosphere variables (</em><em>outgoing longwave radiation</em><em>/OLR, 1,5 km wind,</em><em> and</em><em> surface wind) were band-pass filtered for 20-100 days period. Spectral density from OLR and 1,5 km wind (2003-2012) shows that the MJO period was dominantly occurred for </em><em>40–50</em><em> days. </em><em>Average </em><em>pro-pagation</em><em> of</em><em> </em><em> MJO</em><em> </em><em>velocity </em><em>resulted from the atmospheric variable analysis by </em><em>Hovmöller</em><em> diagram was 4,7 m/s. Cross correlation between SST and OLR in South Java and Banda Sea result</em><em>s</em><em> a strong corre-lation during MJO active phase, where </em><em>MJO too</em><em>k </em><em> place first and was then followed by</em><em> the </em><em>decreasing </em><em>SST </em><em>along the equatorial region</em><em>.</em><em> Increasing chlorophyll-a concentration occured at some areas du</em><em>-</em><em>ring MJO active phase with relatively short phase delay. </em><em>During the MJO active phase, fluctuation of wind velocity generates variation over mixed layer depth and triggers upwelling /entrainment. Nutri-ent was upwelled to the water surface and hence increase phytoplankton production and chlorophyll-a concentration.</em></p><p><em> </em><strong><em>Keywords</em></strong><em>:</em><em> Madden Julian Oscillation, OLR, </em><em>sea surface temperature, surface chlorophyll-a</em></p>


Author(s):  
Pavel A. Golubkin ◽  
◽  
Julia E. Smirnova ◽  
Vsevolod S. Kolyada ◽  
◽  
...  

In this study possible changes in sea surface temperature (SST) caused by passage of polar lows and analyzed. Polar lows are extreme atmospheric phenomena inherent to high latitudes. They develop sea surface wind speeds from 15 m/s up to hurricane force values and are characterized by small sizes (on average, 300 km) and lifetimes (less than two days), which complicates their detection and studies. It is assumed that as in case of tropical cyclones, which may considerably lower SST due to intense mixing and entrainment of colder waters to the ocean upper mixed layer, polar lows could similarly influence SST. Moreover, in the high latitude areas, where salt stratification may be present instead of temperature stratification, SST may increase due to mixing with deeper warmer layer. In this study 330 polar lows were analyzed using satellite passive microwave radiometer measurements of SST. In result, 47 cases when average SST values changed in polar low forcing areas were found. Out of these cases, in six cases SST increase of at least 0.5 °С was found, and in fifteen cases SST decrease of at least 0.5 °С was found. This indicates that upper ocean response to polar lows is quite rare phenomenon, which should be further analyzed along with its possible role in the ocean-ice-atmosphere system.


2020 ◽  
Vol 200 ◽  
pp. 06002
Author(s):  
Dandi Arianto Pelly ◽  
Muh Aris Marfai ◽  
Evita Hanie Pangaribowo ◽  
Akhmad Fadholi

This study aimed to identify the effect of the positive Indian Ocean Dipole (IOD) phenomenon on the spatial, temporal distribution of chlorophyll-a concentrations in the East Season in Padang Sea in 2019. The method used in this research was the Kriging analysis method applied in oceanographic parameter satellite imagery extraction point data. By applying the method, we produced the maps of the spatial distribution variation of chlorophyll-a content and Sea Surface Temperature (SST). The data of IOD events in 2019 showed the occurrence of a strong positive IOD phenomenon that caused anomaly in the Sea Surface Temperature (SST) in Padang Sea. The interpretation of Aqua-Modis level 2 satellite image data showed that the sea surface temperature during the East Season was relatively cold, which was in the minimum temperature ranging from 18.5-22°C with a normal temperature condition of 28-29°C. The minimum chlorophyll-a concentration in the East Season was 0.252 mg/m3; while the maximum value reached 18.5 mg/m3. The distribution value of chlorophyll-a concentration was 1.028 mg/m3.The RMSe Cross Validation value obtained was 0.504 for SST and 0.363 for chlorophyll-a with a mean SST of -0.0005 and mean chlorophyll-a of -0.0039.


Sign in / Sign up

Export Citation Format

Share Document