scholarly journals Mapping methane concentrations from a controlled release experiment using the next generation airborne visible/infrared imaging spectrometer (AVIRIS-NG)

2016 ◽  
Vol 179 ◽  
pp. 104-115 ◽  
Author(s):  
A.K. Thorpe ◽  
C. Frankenberg ◽  
A.D. Aubrey ◽  
D.A. Roberts ◽  
A.A. Nottrott ◽  
...  
2019 ◽  
Vol 11 (18) ◽  
pp. 2129 ◽  
Author(s):  
John W. Chapman ◽  
David R. Thompson ◽  
Mark C. Helmlinger ◽  
Brian D. Bue ◽  
Robert O. Green ◽  
...  

We describe advanced spectral and radiometric calibration techniques developed for NASA’s Next Generation Airborne Visible Infrared Imaging Spectrometer (AVIRIS-NG). By employing both statistically rigorous analysis and utilizing in situ data to inform calibration procedures and parameter estimation, we can dramatically reduce undesirable artifacts and minimize uncertainties of calibration parameters notoriously difficult to characterize in the laboratory. We describe a novel approach for destriping imaging spectrometer data through minimizing a Markov Random Field model. We then detail statistical methodology for bad pixel correction of the instrument, followed by the laboratory and field protocols involved in the corrections and evaluate their effectiveness on historical data. Finally, we review the geometric processing procedure used in production of the radiometrically calibrated image data.


2019 ◽  
Vol 11 (24) ◽  
pp. 3054 ◽  
Author(s):  
Alana K. Ayasse ◽  
Philip E. Dennison ◽  
Markus Foote ◽  
Andrew K. Thorpe ◽  
Sarang Joshi ◽  
...  

This study evaluates a new generation of satellite imaging spectrometers to measure point source methane emissions from anthropogenic sources. We used the Airborne Visible and Infrared Imaging Spectrometer Next Generation(AVIRIS-NG) images with known methane plumes to create two simulated satellite products. One simulation had a 30 m spatial resolution with ~200 Signal-to-Noise Ratio (SNR) in the Shortwave Infrared (SWIR) and the other had a 60 m spatial resolution with ~400 SNR in the SWIR; both products had a 7.5 nm spectral spacing. We applied a linear matched filter with a sparsity prior and an albedo correction to detect and quantify the methane emission in the original AVIRIS-NG images and in both satellite simulations. We also calculated an emission flux for all images. We found that all methane plumes were detectable in all satellite simulations. The flux calculations for the simulated satellite images correlated well with the calculated flux for the original AVIRIS-NG images. We also found that coarsening spatial resolution had the largest impact on the sensitivity of the results. These results suggest that methane detection and quantification of point sources will be possible with the next generation of satellite imaging spectrometers.


2018 ◽  
Vol 215 ◽  
pp. 386-397 ◽  
Author(s):  
Alana K. Ayasse ◽  
Andrew K. Thorpe ◽  
Dar A. Roberts ◽  
Christopher C. Funk ◽  
Philip E. Dennison ◽  
...  

1996 ◽  
Vol 119 (3) ◽  
pp. 531-546 ◽  
Author(s):  
L. Weitzel ◽  
A. Krabbe ◽  
H. Kroker ◽  
N. Thatte ◽  
L. E. Tacconi-Garman ◽  
...  

2019 ◽  
Vol 12 (10) ◽  
pp. 5655-5668 ◽  
Author(s):  
Daniel H. Cusworth ◽  
Daniel J. Jacob ◽  
Daniel J. Varon ◽  
Christopher Chan Miller ◽  
Xiong Liu ◽  
...  

Abstract. We examine the potential for global detection of methane plumes from individual point sources with the new generation of spaceborne imaging spectrometers (EnMAP, PRISMA, EMIT, SBG, CHIME) scheduled for launch in 2019–2025. These instruments are designed to map the Earth's surface at high spatial resolution (30 m×30 m) and have a spectral resolution of 7–10 nm in the 2200–2400 nm band that should also allow useful detection of atmospheric methane. We simulate scenes viewed by EnMAP (10 nm spectral resolution, 180 signal-to-noise ratio) using the EnMAP end-to-end simulation tool with superimposed methane plumes generated by large-eddy simulations. We retrieve atmospheric methane and surface reflectivity for these scenes using the IMAP-DOAS optimal estimation algorithm. We find an EnMAP precision of 3 %–7 % for atmospheric methane depending on surface type. This allows effective single-pass detection of methane point sources as small as 100 kg h−1 depending on surface brightness, surface homogeneity, and wind speed. Successful retrievals over very heterogeneous surfaces such as an urban mosaic require finer spectral resolution. We tested the EnMAP capability with actual plume observations over oil/gas fields in California from the Airborne Visible/Infrared Imaging Spectrometer – Next Generation (AVIRIS-NG) sensor (3 m×3 m pixel resolution, 5 nm spectral resolution, SNR 200–400), by spectrally and spatially downsampling the AVIRIS-NG data to match EnMAP instrument specifications. Results confirm that EnMAP can successfully detect point sources of ∼100 kg h−1 over bright surfaces. Source rates inferred with a generic integrated mass enhancement (IME) algorithm were lower for EnMAP than for AVIRIS-NG. Better agreement may be achieved with a more customized IME algorithm. Our results suggest that imaging spectrometers in space could play an important role in the future for quantifying methane emissions from point sources worldwide.


2019 ◽  
Author(s):  
Andrew Feitz ◽  
Bruce Radke ◽  
Md. Shahadat Hossain ◽  
Brett Harris ◽  
Ralf Schaa ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Simon Plank ◽  
Francesco Marchese ◽  
Nicola Genzano ◽  
Michael Nolde ◽  
Sandro Martinis

AbstractSatellite-based Earth observation plays a key role for monitoring volcanoes, especially those which are located in remote areas and which very often are not observed by a terrestrial monitoring network. In our study we jointly analyzed data from thermal (Moderate Resolution Imaging Spectrometer MODIS and Visible Infrared Imaging Radiometer Suite VIIRS), optical (Operational Land Imager and Multispectral Instrument) and synthetic aperture radar (SAR) (Sentinel-1 and TerraSAR-X) satellite sensors to investigate the mid-October 2019 surtseyan eruption at Late’iki Volcano, located on the Tonga Volcanic Arc. During the eruption, the remains of an older volcanic island formed in 1995 collapsed and a new volcanic island, called New Late’iki was formed. After the 12 days long lasting eruption, we observed a rapid change of the island’s shape and size, and an erosion of this newly formed volcanic island, which was reclaimed by the ocean two months after the eruption ceased. This fast erosion of New Late’iki Island is in strong contrast to the over 25 years long survival of the volcanic island formed in 1995.


2021 ◽  
Author(s):  
Andrew Feitz ◽  
Bruce Radke ◽  
Kwong Soon Chan ◽  
Ludovic Ricard ◽  
Aleks Kalinowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document