scholarly journals Advantages of retrieving pigment content [μg/cm2] versus concentration [%] from canopy reflectance

2019 ◽  
Vol 230 ◽  
pp. 111195 ◽  
Author(s):  
Teja Kattenborn ◽  
Felix Schiefer ◽  
Pablo Zarco-Tejada ◽  
Sebastian Schmidtlein
2019 ◽  
Vol 11 (10) ◽  
pp. 1150 ◽  
Author(s):  
Martin Danner ◽  
Katja Berger ◽  
Matthias Wocher ◽  
Wolfram Mauser ◽  
Tobias Hank

Decades after release of the first PROSPECT + SAIL (commonly called PROSAIL) versions, the model is still the most famous representative in the field of canopy reflectance modelling and has been widely used to obtain plant biochemical and structural variables, particularly in the agricultural context. The performance of the retrieval is usually assessed by quantifying the distance between the estimated and the in situ measured variables. While this has worked for hundreds of studies that obtained canopy density as a one-sided Leaf Area Index (LAI) or pigment content, little is known about the role of the canopy geometrical properties specified as the Average Leaf Inclination Angle (ALIA). In this study, we exploit an extensive field dataset, including narrow-band field spectra, leaf variables and canopy properties recorded in seven individual campaigns for winter wheat (4x) and silage maize (3x). PROSAIL outputs generally did not represent field spectra well, when in situ variables served as input for the model. A manual fitting of ALIA and leaf water (EWT) revealed significant deviations for both variables (RMSE = 14.5°, 0.020 cm) and an additional fitting of the brown leaf pigments (Cbrown) was necessary to obtain matching spectra at the near infrared (NIR) shoulder. Wheat spectra tend to be underestimated by the model until the emergence of inflorescence when PROSAIL begins to overestimate crop reflectance. This seasonal pattern could be attributed to an attenuated development of ALIAopt compared to in situ measured ALIA. Segmentation of nadir images of wheat was further used to separate spectral contributors into dark background, ears and leaves + stalks. It could be shown that the share of visible fruit ears from nadir view correlates positively with the deviations between field spectral measurement and PROSAIL spectral outputs (R² = 0.78 for aggregation by phenological stages), indicating that retrieval errors increase for ripening stages. An appropriate model parameterization is recommended to assure accurate retrievals of biophysical and biochemical products of interest. The interpretation of inverted ALIA as physical leaf inclinations is considered unfeasible and we argue in favour of treating it as a free calibration parameter.


Author(s):  
Hind Hadi ◽  
Gufran Salim

A simple, rapid and sensitive spectrophotmetric method for trace determination of salbutamol (SAL) in aqueous solution and in pharmaceutical preparations is described. The method is based on the diazotization coupling reaction of the intended compound with 4-amino benzoic acid (ABA) in alkaline medium to form an intense orange, water soluble dye that is stable and shows maximum absorption at 410 nm. A graph of absorbance versus concentration indicates that Beer’s law is obeyed over the concentration range of 0.5-30 ppm, with a molar absorbtivity 3.76×104 L.mol-1 .cm-1 depending on the concentration of SAL. The optimum conditions and stability of the colored product have been investigated and the method was applied successfully to the determination of SAL in dosage forms.


2020 ◽  
Vol 784 (9) ◽  
pp. 21-26
Author(s):  
O.V. Chernousova ◽  
◽  
O.B. Rudakov ◽  
S.O. Sadykov ◽  
◽  
...  

1973 ◽  
Vol 37 ◽  
Author(s):  
N. Lust

Pigment content of ashes grown up under different circumstances - The pigment content (chlorophyll a, chlorophyll b,  xanthophyll and carotene) has been researched with ashes grown up under  different light circumstances and varying in age and height.     The results prove that the general laws concerning the influence of light  on the pigment content, don’t always work.     The phenomen is very complex. The light quantity is very important in some  cases, but insignificant in others. It seems origin and height of plants have  a strong influence. The results prove also the influence of the environment  is much higher on small plants as on big ones.     The research indicates finally the correlation between the green pigments,  the yellow pigments, and between the green pigments on the one side and the  yellow ones on the other side.


Author(s):  
Hibiki M. Noda ◽  
Hiroyuki Muraoka ◽  
Kenlo Nishida Nasahara

AbstractThe need for progress in satellite remote sensing of terrestrial ecosystems is intensifying under climate change. Further progress in Earth observations of photosynthetic activity and primary production from local to global scales is fundamental to the analysis of the current status and changes in the photosynthetic productivity of terrestrial ecosystems. In this paper, we review plant ecophysiological processes affecting optical properties of the forest canopy which can be measured with optical remote sensing by Earth-observation satellites. Spectral reflectance measured by optical remote sensing is utilized to estimate the temporal and spatial variations in the canopy structure and primary productivity. Optical information reflects the physical characteristics of the targeted vegetation; to use this information efficiently, mechanistic understanding of the basic consequences of plant ecophysiological and optical properties is essential over broad scales, from single leaf to canopy and landscape. In theory, canopy spectral reflectance is regulated by leaf optical properties (reflectance and transmittance spectra) and canopy structure (geometrical distributions of leaf area and angle). In a deciduous broadleaf forest, our measurements and modeling analysis of leaf-level characteristics showed that seasonal changes in chlorophyll content and mesophyll structure of deciduous tree species lead to a seasonal change in leaf optical properties. The canopy reflectance spectrum of the deciduous forest also changes with season. In particular, canopy reflectance in the green region showed a unique pattern in the early growing season: green reflectance increased rapidly after leaf emergence and decreased rapidly after canopy closure. Our model simulation showed that the seasonal change in the leaf optical properties and leaf area index caused this pattern. Based on this understanding we discuss how we can gain ecophysiological information from satellite images at the landscape level. Finally, we discuss the challenges and opportunities of ecophysiological remote sensing by satellites.


Sign in / Sign up

Export Citation Format

Share Document