scholarly journals Fitted PROSAIL Parameterization of Leaf Inclinations, Water Content and Brown Pigment Content for Winter Wheat and Maize Canopies

2019 ◽  
Vol 11 (10) ◽  
pp. 1150 ◽  
Author(s):  
Martin Danner ◽  
Katja Berger ◽  
Matthias Wocher ◽  
Wolfram Mauser ◽  
Tobias Hank

Decades after release of the first PROSPECT + SAIL (commonly called PROSAIL) versions, the model is still the most famous representative in the field of canopy reflectance modelling and has been widely used to obtain plant biochemical and structural variables, particularly in the agricultural context. The performance of the retrieval is usually assessed by quantifying the distance between the estimated and the in situ measured variables. While this has worked for hundreds of studies that obtained canopy density as a one-sided Leaf Area Index (LAI) or pigment content, little is known about the role of the canopy geometrical properties specified as the Average Leaf Inclination Angle (ALIA). In this study, we exploit an extensive field dataset, including narrow-band field spectra, leaf variables and canopy properties recorded in seven individual campaigns for winter wheat (4x) and silage maize (3x). PROSAIL outputs generally did not represent field spectra well, when in situ variables served as input for the model. A manual fitting of ALIA and leaf water (EWT) revealed significant deviations for both variables (RMSE = 14.5°, 0.020 cm) and an additional fitting of the brown leaf pigments (Cbrown) was necessary to obtain matching spectra at the near infrared (NIR) shoulder. Wheat spectra tend to be underestimated by the model until the emergence of inflorescence when PROSAIL begins to overestimate crop reflectance. This seasonal pattern could be attributed to an attenuated development of ALIAopt compared to in situ measured ALIA. Segmentation of nadir images of wheat was further used to separate spectral contributors into dark background, ears and leaves + stalks. It could be shown that the share of visible fruit ears from nadir view correlates positively with the deviations between field spectral measurement and PROSAIL spectral outputs (R² = 0.78 for aggregation by phenological stages), indicating that retrieval errors increase for ripening stages. An appropriate model parameterization is recommended to assure accurate retrievals of biophysical and biochemical products of interest. The interpretation of inverted ALIA as physical leaf inclinations is considered unfeasible and we argue in favour of treating it as a free calibration parameter.

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4570
Author(s):  
Linsheng Huang ◽  
Yuanyuan Zhang ◽  
Guijun Yang ◽  
Dong Liang ◽  
Heli Li ◽  
...  

Vertical heterogeneity of the biochemical characteristics of crop canopy is important in diagnosing and monitoring nutrition, disease, and crop yield via remote sensing. However, the research on vertical isomerism was not comprehensive. Experiments were carried out from the two levels of simulation and verification to analyze the applicability of this recently development model. Effects of winter wheat on spectrum were studied when input different structure parameters (e.g., leaf area index (LAI)) and physicochemical parameters (e.g., chlorophyll content (Chla+b) and water content (Cw)) to the mSCOPE (Soil Canopy Observation, Photochemistry, and Energy fluxes) model. The maximum operating efficiency was 127.43, when the winter wheat was stratified into three layers. Meanwhile, the simulation results also proved that: the vertical profile of LAI had an influence on canopy reflectance in almost all bands; the vertical profile of Chla+b mainly affected the reflectivity of visible region; the vertical profile of Cw only affected the near-infrared reflectance. The verification results showed that the vegetation indexes (VIs) selected of different bands were strongly correlated with the parameters of the canopy. LAI, Chla+b and Cw affected VIs estimation related to LAI, Chla+b and Cw respectively. The Root Mean Square Error (RMSE) of the new-proposed NDVIgreen was the smallest, which was 0.05. Sensitivity analysis showed that the spectrum was more sensitive to changes in upper layer parameters, which verified the rationality of mSCOPE model in explaining the law that light penetration in vertical nonuniform canopy gradually decreases with the increase of layers.


2019 ◽  
Vol 11 (17) ◽  
pp. 2050 ◽  
Author(s):  
Andrew Revill ◽  
Anna Florence ◽  
Alasdair MacArthur ◽  
Stephen Hoad ◽  
Robert Rees ◽  
...  

Leaf Area Index (LAI) and chlorophyll content are strongly related to plant development and productivity. Spatial and temporal estimates of these variables are essential for efficient and precise crop management. The availability of open-access data from the European Space Agency’s (ESA) Sentinel-2 satellite—delivering global coverage with an average 5-day revisit frequency at a spatial resolution of up to 10 metres—could provide estimates of these variables at unprecedented (i.e., sub-field) resolution. Using synthetic data, past research has demonstrated the potential of Sentinel-2 for estimating crop variables. Nonetheless, research involving a robust analysis of the Sentinel-2 bands for supporting agricultural applications is limited. We evaluated the potential of Sentinel-2 data for retrieving winter wheat LAI, leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC). In coordination with destructive and non-destructive ground measurements, we acquired multispectral data from an Unmanned Aerial Vehicle (UAV)-mounted sensor measuring key Sentinel-2 spectral bands (443 to 865 nm). We applied Gaussian processes regression (GPR) machine learning to determine the most informative Sentinel-2 bands for retrieving each of the variables. We further evaluated the GPR model performance when propagating observation uncertainty. When applying the best-performing GPR models without propagating uncertainty, the retrievals had a high agreement with ground measurements—the mean R2 and normalised root-mean-square error (NRMSE) were 0.89 and 8.8%, respectively. When propagating uncertainty, the mean R2 and NRMSE were 0.82 and 11.9%, respectively. When accounting for measurement uncertainty in the estimation of LAI and CCC, the number of most informative Sentinel-2 bands was reduced from four to only two—the red-edge (705 nm) and near-infrared (865 nm) bands. This research demonstrates the value of the Sentinel-2 spectral characteristics for retrieving critical variables that can support more sustainable crop management practices.


Author(s):  
Lijuan Wang ◽  
Guimin Zhang ◽  
Hui Lin ◽  
Liang Liang ◽  
Zheng Niu

The Normalized Difference Vegetation Index (NDVI) is widely used for Leaf Area Index (LAI) estimation. It is well documented that the NDVI is extremely subject to the saturation problem when LAI reaches a high value. A new multi-angular vegetation index, the Hotspot-darkspot Difference Vegetation Index (HDVI) is proposed to estimate the high density LAI. The HDVI, defined as the difference between the hot and dark spot NDVI, relative to the dark spot NDVI, was proposed based on the Analytical two-layer Canopy Reflectance Model (ACRM) model outputs. This index is validated using both in situ experimental data in wheat and data from the multi-angular optical Compact High-Resolution Imaging Spectrometer (CHRIS) satellite. Both indices, the Hotspot-Darkspot Index (HDS) and the NDVI were also selected to analyze the relationship with LAI, and were compared with new index HDVI. The results show that HDVI is an appropriate proxy of LAI with higher determination coefficients (R2) for both the data from the in situ experiment (R2=0.7342, RMSE=0.0205) and the CHRIS data (R2=0.7749, RMSE=0.1013). Our results demonstrate that HDVI can make better the occurrence of saturation limits with the information of multi-angular observation, and is more appropriate for estimating LAI than either HDS or NDVI at high LAI values. Although the new index needs further evaluation, it also has the potential under the condition of dense canopies. It provides the effective improvement to the NDVI and other vegetation indices that are based on the red and NIR spectral bands.


2019 ◽  
Vol 11 (11) ◽  
pp. 1331 ◽  
Author(s):  
Fenling Li ◽  
Li Wang ◽  
Jing Liu ◽  
Yuna Wang ◽  
Qingrui Chang

Leaf nitrogen concentration (LNC) is an important indicator for accurate diagnosis and quantitative evaluation of plant growth status. The objective was to apply a discrete wavelet transform (DWT) analysis in winter wheat for the estimation of LNC based on visible and near-infrared (400–1350 nm) canopy reflectance spectra. In this paper, in situ LNC data and ground-based hyperspectral canopy reflectance was measured over three years at different sites during the tillering, jointing, booting and filling stages of winter wheat. The DWT analysis was conducted on canopy original spectrum, log-transformed spectrum, first derivative spectrum and continuum removal spectrum, respectively, to obtain approximation coefficients, detail coefficients and energy values to characterize canopy spectra. The quantitative relationships between LNC and characteristic parameters were investigated and compared with models established by sensitive band reflectance and typical spectral indices. The results showed combining log-transformed spectrum and a sym8 wavelet function with partial least squares regression (PLS) based on the approximation coefficients at decomposition level 4 most accurately predicted LNC. This approach could explain 11% more variability in LNC than the best spectral index mSR705 alone, and was more stable in estimating LNC than models based on random forest regression (RF). The results indicated that narrowband reflectance spectroscopy (450–1350 nm) combined with DWT analysis and PLS regression was a promising method for rapid and nondestructive estimation of LNC for winter wheat across a range in growth stages.


Author(s):  
Lijuan Wang ◽  
Guimin Zhang ◽  
Hui Lin ◽  
Liang Liang ◽  
Zheng Niu

The Normalized Difference Vegetation Index (NDVI) is widely used for Leaf Area Index (LAI) estimation. It is well documented that the NDVI is extremely subject to the saturation problem when LAI reaches a high value. A new multi-angular vegetation index, the Hotspot-darkspot Difference Vegetation Index (HDVI) is proposed to estimate the high density LAI. The HDVI, defined as the difference between the hot and dark spot NDVI, relative to the dark spot NDVI, was proposed based on the Analytical two-layer Canopy Reflectance Model (ACRM) model outputs. This index is validated using both in situ experimental data in wheat and data from the multi-angular optical Compact High-Resolution Imaging Spectrometer (CHRIS) satellite. Both indices, the Hotspot-Darkspot Index (HDS) and the NDVI were also selected to analyze the relationship with LAI, and were compared with new index HDVI. The results show that HDVI is an appropriate proxy of LAI with higher determination coefficients (R2) for both the data from the in situ experiment (R2=0.7342, RMSE=0.0205) and the CHRIS data (R2=0.7749, RMSE=0.1013). Our results demonstrate that HDVI can make better the occurrence of saturation limits with the information of multi-angular observation, and is more appropriate for estimating LAI than either HDS or NDVI at high LAI values. Although the new index needs further evaluation, it also has the potential under the condition of dense canopies. It provides the effective improvement to the NDVI and other vegetation indices that are based on the red and NIR spectral bands.


2018 ◽  
Vol 10 (10) ◽  
pp. 1637 ◽  
Author(s):  
Thomas Meyer ◽  
Lutz Weihermüller ◽  
Harry Vereecken ◽  
François Jonard

L-band radiometer measurements were performed at the Selhausen remote sensing field laboratory (Germany) over the entire growing season of a winter wheat stand. L-band microwave observations were collected over two different footprints within a homogenous winter wheat stand in order to disentangle the emissions originating from the soil and from the vegetation. Based on brightness temperature (TB) measurements performed over an area consisting of a soil surface covered by a reflector (i.e., to block the radiation from the soil surface), vegetation optical depth (τ) information was retrieved using the tau-omega (τ-ω) radiative transfer model. The retrieved τ appeared to be clearly polarization dependent, with lower values for horizontal (H) and higher values for vertical (V) polarization. Additionally, a strong dependency of τ on incidence angle for the V polarization was observed. Furthermore, τ indicated a bell-shaped temporal evolution, with lowest values during the tillering and senescence stages, and highest values during flowering of the wheat plants. The latter corresponded to the highest amounts of vegetation water content (VWC) and largest leaf area index (LAI). To show that the time, polarization, and angle dependence is also highly dependent on the observed vegetation species, white mustard was grown during a short experiment, and radiometer measurements were performed using the same experimental setup. These results showed that the mustard canopy is more isotropic compared to the wheat vegetation (i.e., the τ parameter is less dependent on incidence angle and polarization). In a next step, the relationship between τ and in situ measured vegetation properties (VWC, LAI, total of aboveground vegetation biomass, and vegetation height) was investigated, showing a strong correlation between τ over the entire growing season and the VWC as well as between τ and LAI. Finally, the soil moisture was retrieved from TB observations over a second plot without a reflector on the ground. The retrievals were significantly improved compared to in situ measurements by using the time, polarization, and angle dependent τ as a priori information. This improvement can be explained by the better representation of the vegetation layer effect on the measured TB.


2019 ◽  
Vol 11 (15) ◽  
pp. 1809 ◽  
Author(s):  
He ◽  
Zhang ◽  
Su ◽  
Lu ◽  
Yao ◽  
...  

The emergence of rice panicle substantially changes the spectral reflectance of rice canopy and, as a result, decreases the accuracy of leaf area index (LAI) that was derived from vegetation indices (VIs). From a four-year field experiment with using rice varieties, nitrogen (N) rates, and planting densities, the spectral reflectance characteristics of panicles and the changes in canopy reflectance after panicle removal were investigated. A rice “panicle line”—graphical relationship between red-edge and near-infrared bands was constructed by using the near-infrared and red-edge spectral reflectance of rice panicles. Subsequently, a panicle-adjusted renormalized difference vegetation index (PRDVI) that was based on the “panicle line” and the renormalized difference vegetation index (RDVI) was developed to reduce the effects of rice panicles and background. The results showed that the effects of rice panicles on canopy reflectance were concentrated in the visible region and the near-infrared region. The red band (670 nm) was the most affected by panicles, while the red-edge bands (720–740 nm) were less affected. In addition, a combination of near-infrared and red-edge bands was for the one that best predicted LAI, and the difference vegetation index (DI) (976, 733) performed the best, although it had relatively low estimation accuracy (R2 = 0.60, RMSE = 1.41 m2/m2). From these findings, correcting the near-infrared band in the RDVI by the panicle adjustment factor (θ) developed the PRDVI, which was obtained while using the “panicle line”, and the less-affected red-edge band replaced the red band. Verification data from an unmanned aerial vehicle (UAV) showed that the PRDVI could minimize the panicle and background influence and was more sensitive to LAI (R2 = 0.77; RMSE = 1.01 m2/m2) than other VIs during the post-heading stage. Moreover, of all the assessed VIs, the PRDVI yielded the highest R2 (0.71) over the entire growth period, with an RMSE of 1.31 (m2/m2). These results suggest that the PRDVI is an efficient and suitable LAI estimation index.


2009 ◽  
Vol 13 (7) ◽  
pp. 1375-1398 ◽  
Author(s):  
S. Liu ◽  
X. Mo ◽  
W. Zhao ◽  
V. Naeimi ◽  
D. Dai ◽  
...  

Abstract. The change pattern and trend of soil moisture (SM) in the Wuding River basin, Loess Plateau, China is explored based on the simulated long-term SM data from 1956 to 2004 using an eco-hydrological process-based model, Vegetation Interface Processes model, VIP. In-situ SM observations together with a remotely sensed SM dataset retrieved by the Vienna University of Technology are used to validate the model. In the VIP model, climate-eco-hydrological (CEH) variables such as precipitation, air temperature and runoff observations and also simulated evapotranspiration (ET), leaf area index (LAI), and vegetation production are used to analyze the soil moisture evolution mechanism. The results show that the model is able to capture seasonal SM variations. The seasonal pattern, multi-year variation, standard deviation and coefficient of variation (CV) of SM at the daily, monthly and annual scale are well explained by CEH variables. The annual and inter-annual variability of SM is the lowest compared with that of other CEH variables. The trend analysis shows that SM is in decreasing tendency at α=0.01 level of significance, confirming the Northern Drying phenomenon. This trend can be well explained by the decreasing tendency of precipitation (α=0.1) and increasing tendency of temperature (α=0.01). The decreasing tendency of runoff has higher significance level (α=0.001). Because of SM's decreasing tendency, soil evaporation (ES) is also decreasing (α=0.05). The tendency of net radiation (Rn), evapotranspiration (ET), transpiration (EC), canopy intercept (EI) is not obvious. Net primary productivity (NPP), of which the significance level is lower than α=0.1, and gross primary productivity (GPP) at α=0.01 are in increasing tendency.


2008 ◽  
Vol 5 (6) ◽  
pp. 3557-3604
Author(s):  
S. Liu ◽  
X. Mo ◽  
W. Zhao ◽  
V. Naeimi ◽  
D. Dai ◽  
...  

Abstract. For integrative management of soil and water in the Wuding River basin, Loess plateau, China, where severe soil erosion damages are incurred, the ecohydrological behavior of the region is needed to be explored. In this study we focus on the evolution of soil moisture (SM) in the basin. Since there are only twelve years in-situ SM measurements available at two stations from 1992 to 2004, an eco-hydrological processes-based model (VIP, Vegetation Interface Processes model) is employed to simulate the long-term SM, evapotranspiration (ET), vegetation cover and production variation from 1956 to 2004, for the mechanical analysis of SM change. In-situ SM observations and a remotely sensed SM dataset retrieved by the Vienna University of Technology are used to validate the model. The results show that the model is able to capture seasonal SM variations. The seasonal pattern, multi-year variation, standard deviation and CV (coefficient of the variation) of SM at the daily, monthly and annual scale are well explained by the climatic and ecological factors such as precipitation, temperature, net radiation, evapotranspiration, and Leaf Area Index (LAI, denoted as LAI). The annual and inter-annual variability of SM is the lowest comparing with that for other 11-ecohydrological variables. The trend analysis shows that SM is in decreasing tendency at ∝=0.01 level of significance. Its significance is lower than that of runoff and that of temperature (∝=0.001), whereas higher than that of precipitation (∝=0.1). The products of these long-term SM data aim to help integrative management of soil and water resources.


Sign in / Sign up

Export Citation Format

Share Document