scholarly journals Disentangling the role of prefire vegetation vs. burning conditions on fire severity in a large forest fire in SE Spain

2020 ◽  
Vol 247 ◽  
pp. 111891 ◽  
Author(s):  
O. Viedma ◽  
F. Chico ◽  
J.J. Fernández ◽  
C. Madrigal ◽  
H.D. Safford ◽  
...  
Keyword(s):  
2021 ◽  
Vol 13 (1) ◽  
pp. 432
Author(s):  
Aru Han ◽  
Song Qing ◽  
Yongbin Bao ◽  
Li Na ◽  
Yuhai Bao ◽  
...  

An important component in improving the quality of forests is to study the interference intensity of forest fires, in order to describe the intensity of the forest fire and the vegetation recovery, and to improve the monitoring ability of the dynamic change of the forest. Using a forest fire event in Bilahe, Inner Monglia in 2017 as a case study, this study extracted the burned area based on the BAIS2 index of Sentinel-2 data for 2016–2018. The leaf area index (LAI) and fractional vegetation cover (FVC), which are more suitable for monitoring vegetation dynamic changes of a burned area, were calculated by comparing the biophysical and spectral indices. The results showed that patterns of change of LAI and FVC of various land cover types were similar post-fire. The LAI and FVC of forest and grassland were high during the pre-fire and post-fire years. During the fire year, from the fire month (May) through the next 4 months (September), the order of areas of different fire severity in terms of values of LAI and FVC was: low > moderate > high severity. During the post fire year, LAI and FVC increased rapidly in areas of different fire severity, and the ranking of areas of different fire severity in terms of values LAI and FVC was consistent with the trend observed during the pre-fire year. The results of this study can improve the understanding of the mechanisms involved in post-fire vegetation change. By using quantitative inversion, the health trajectory of the ecosystem can be rapidly determined, and therefore this method can play an irreplaceable role in the realization of sustainable development in the study area. Therefore, it is of great scientific significance to quantitatively retrieve vegetation variables by remote sensing.


1995 ◽  
Vol 43 (4) ◽  
pp. 339-345 ◽  
Author(s):  
M.D. Lledó ◽  
M.B. Crespo ◽  
J.B. Amo-Marco

Populus euphratica Olivier is native to the Irano—Turanian areas (Middle East). Elche (Alicante province, SE Spain) is known to be its only European location. Nodal segments from root shoots were established in vitro in a Murashige and Skoog medium supplemented with several cytokinins. Ethylene inhibitors AgNO3 and CoCl2 were used in combination with kinetin. Hormone-free media supplemented with sucrose (20–60 mg 1−1) was also tested. Ethylene was measured by gas chromatography, and both the percentage of sprouting shoots and lenticel hypertrophy in cultures were recorded. Ethylene production was higher in cultures supplemented with cytokinins (especially with meta-topolin), with high sprouting percentages, and lenticel hypertrophy. In cultures supplemented with 6-benzylaminopurine or 6-(γ,γ,-dimethylallylamino)-purine, ethylene production was lower and explants looked unhealthy. Ethylene formation was inhibited in cultures supplemented with AgNO3 (1 mg 1−1), which also decreased percentage of sprouting buds and lenticel hypertrophy.


2017 ◽  
Vol 8 (1) ◽  
pp. 55-62
Author(s):  
Lailan Syaufina ◽  
Vera Linda Purba

Forest fire is one of the problem in forest management. The objectives of the study was to measure the forest fire severity based on soil physical and chemical properties. The forest fire effects were assessed using fire severity method and forest health monitoring plot. The study indicated that the burned areas at BKPH Parung Panjang after two years included in low fire severity. The site properties and growth performance analysis showed that the fire has only affected on pH, Mg and tree diameter significantly, whereas the other parameters such as bulk density, P, N, Na, K, Ca and height were not significantly affected. In addition, both burned and unburned areas are classified as in health condition.Key words : fire severity, forest health monitoring, growth performance, site properties


2014 ◽  
Vol 144 ◽  
pp. 247-257 ◽  
Author(s):  
David Martínez-Granados ◽  
Javier Calatrava
Keyword(s):  

2009 ◽  
Vol 18 (5) ◽  
pp. 483 ◽  
Author(s):  
Mike D. Flannigan ◽  
Meg A. Krawchuk ◽  
William J. de Groot ◽  
B. Mike Wotton ◽  
Lynn M. Gowman

Wildland fire is a global phenomenon, and a result of interactions between climate–weather, fuels and people. Our climate is changing rapidly primarily through the release of greenhouse gases that may have profound and possibly unexpected impacts on global fire activity. The present paper reviews the current understanding of what the future may bring with respect to wildland fire and discusses future options for research and management. To date, research suggests a general increase in area burned and fire occurrence but there is a lot of spatial variability, with some areas of no change or even decreases in area burned and occurrence. Fire seasons are lengthening for temperate and boreal regions and this trend should continue in a warmer world. Future trends of fire severity and intensity are difficult to determine owing to the complex and non-linear interactions between weather, vegetation and people. Improved fire data are required along with continued global studies that dynamically include weather, vegetation, people, and other disturbances. Lastly, we need more research on the role of policy, practices and human behaviour because most of the global fire activity is directly attributable to people.


2013 ◽  
Vol 3 (2) ◽  
Author(s):  
Stanimir Živanović ◽  
Darko Zigar ◽  
Dejan Krstić

Continuous monitoring of open space is of the utmost importance for the protection of forests against fire. Collected data in real time provide fast intervention of relevant services to extinguish the fire. Timely information about the appearance of fire reduce the number of areas affected by this fire and thereby minimizes the costs of fire extinguishing and the damage caused in the woods. The current way of detecting fire in an open area in Serbia is not in real time, and due to this, it is necessary to implement modern technology of collecting data related to early detection of fires. This paper presents an integral project of forest-fire protection on the territory of Serbia in order to provide the reference for the application of terrestrial automated system for early detection and prediction of forest fires. An automated system could be comprised of infrared and high-resolution TV camera surveillance, covering a large part of the forest area and forest land. Key words: Forest fire, prediction, early detection.


2011 ◽  
Vol 148 (4) ◽  
pp. 655-669 ◽  
Author(s):  
J. LINDTKE ◽  
S. B. ZIEGENBALG ◽  
B. BRUNNER ◽  
J. M. ROUCHY ◽  
C. PIERRE ◽  
...  

AbstractAbundant sulphur is present in the Late Miocene evaporitic sequence of the lacustrine Hellín basin in SE Spain. Weathering of Triassic evaporites controlled the chemical composition of the Miocene lake. The lacustrine deposits comprise gypsum, marlstones, diatomites and carbonate beds. Sulphur-bearing carbonate deposits predominantly consist of early diagenetic dolomite. Abundant dolomite crystals with a spheroidal habit are in accordance with an early formation and point to a microbial origin. The carbon isotopic composition of the dolomite (δ13C values between −10 and −4‰) indicates mixing of lake water carbonate and carbonate derived from the remineralization of organic matter by heterotrophic bacteria. Dolomite precipitated syngenetically under evaporitic conditions as indicated by high oxygen isotope values (δ18O between +6 and +11‰). Nodules of native sulphur are found in gypsum, carbonate beds and marlstone layers. Sulphur formed in the course of microbial sulphate reduction, as reflected by its strong depletion in34S (δ34S values as low as −17‰). Near to the surface many of the sulphur nodules were in part or completely substituted by secondary gypsum, which still reflects the sulphur isotopic composition of native sulphur (−18 to −10‰). This study exemplifies the role of bacterial sulphate reduction in the formation of dolomite and native sulphur in a semi-enclosed lacustrine basin during Late Miocene time.


Sign in / Sign up

Export Citation Format

Share Document