Assessment of small-scale solar PV systems in Iran: Regions priority, potentials and financial feasibility

2018 ◽  
Vol 94 ◽  
pp. 267-274 ◽  
Author(s):  
Khalil Gorgani Firouzjah
Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1443 ◽  
Author(s):  
Abdullah Alshahrani ◽  
Siddig Omer ◽  
Yuehong Su ◽  
Elamin Mohamed ◽  
Saleh Alotaibi

Decarbonisation, energy security and expanding energy access are the main driving forces behind the worldwide increasing attention in renewable energy. This paper focuses on the solar photovoltaic (PV) technology because, currently, it has the most attention in the energy sector due to the sharp drop in the solar PV system cost, which was one of the main barriers of PV large-scale deployment. Firstly, this paper extensively reviews the technical challenges, potential technical solutions and the research carried out in integrating high shares of small-scale PV systems into the distribution network of the grid in order to give a clearer picture of the impact since most of the PV systems installations were at small scales and connected into the distribution network. The paper reviews the localised technical challenges, grid stability challenges and technical solutions on integrating large-scale PV systems into the transmission network of the grid. In addition, the current practices for managing the variability of large-scale PV systems by the grid operators are discussed. Finally, this paper concludes by summarising the critical technical aspects facing the integration of the PV system depending on their size into the grid, in which it provides a strong point of reference and a useful framework for the researchers planning to exploit this field further on.


Author(s):  
Julia M. O’Rourke ◽  
Carolyn C. Seepersad

Small-scale residential solar photovoltaic (PV) systems are becoming increasingly common. In some cases, governments or individual homeowners promote PV technology because of concerns about climate change and a desire to reduce global greenhouse gas emissions (GHGs). While solar PV directly emits no GHGs during use, the panels are associated with a significant amount of embedded GHG emissions, resulting from the manufacturing of the panels, for instance. A review of relevant literature reveals that the life cycle GHG emissions of solar PV panels are significantly influenced by contextual factors, such as the location of the panels during use. The purpose of this paper is to illustrate the many ways context could affect the GHG emissions associated with solar PV systems and to demonstrate — via calculations from a simple analytical model — the potential magnitude of the GHG emissions differences associated with using PV panels in different contexts.


2018 ◽  
pp. 42-54
Author(s):  
Kespanerai Kokchang ◽  
Sopitsuda Tongsopit ◽  
Siripha Junlakarn ◽  
Wichsinee Wibulpolprasert ◽  
Morrakot Tossabanyad

Adoption of solar photovoltaic (PV) power generation systems has been accelerating around the world, contributing to the debate about the future of policy and regulation in a high distributed energy resources future. As one of the leaders in solar investment in Southeast Asia, Thailand has recently shifted its policy framework for the support of small scale, distributed solar PV systems from subsidizing power export through feed-in tariff toward a policy that is focused on self-consumption. This paper investigates stakeholder perspectives of the detailed design options for self-consumption schemes for supporting rooftop solar PV installations. The research methodology employed questionnaires and focus group discussion in order to capture stake-holder perspectives for each element of rooftop solar PV self-consumption schemes. In all, the data derived from questionnaires and focus group discussion involved a total of 72 stakeholders. The results indicate that most stakeholder groups expressed a strong desire for compensation for excess generation of PV electricity from rooftop PV systems. While the majority of electric utilities prefer a system of net billing with real-time buyback, designed to minimize revenue losses, consumers and policymakers preferred a net-metering-based compensation scheme for supporting use of rooftop PV electricity in Thailand.


2017 ◽  
Vol 104 ◽  
pp. 238-247 ◽  
Author(s):  
Zaid Bin Tariq ◽  
Qasim Khalid ◽  
Jahangir Ikram ◽  
Naveed Arshad
Keyword(s):  
Solar Pv ◽  

2018 ◽  
Vol 1 (3) ◽  
Author(s):  
IJE Manager

In the past century, fossil fuels have dominated energy supply in Indonesia. However, concerns over emissions are likely to change the future energy supply. As people become more conscious of environmental issues, alternatives for energy are sought to reduce the environmental impacts. These include renewable energy (RE) sources such as solar photovoltaic (PV) systems. However, most RE sources like solar PV are not available continuously since they depend on weather conditions, in addition to geographical location. Bali has a stable and long sunny day with 12 hours of daylight throughout the year and an average insolation of 5.3 kWh/m2 per day. This study looks at the potential for on-grid solar PV to decarbonize energy in Bali. A site selection methodology using GIS is applied to measure solar PV potential. Firstly, the study investigates the boundaries related to environmental acceptability and economic objectives for land use in Bali. Secondly, the potential of solar energy is estimated by defining the suitable areas, given the technical assumptions of solar PV. Finally, the study extends the analysis to calculate the reduction in emissions when the calculated potential is installed. Some technical factors, such as tilting solar, and intermittency throughout the day, are outside the scope of this study. Based on this model, Bali has an annual electricity potential for 32-53 TWh from solar PV using amorphous thin-film silicon as the cheapest option. This potential amount to three times the electricity supply for the island in 2024 which is estimated at 10 TWh. Bali has an excessive potential to support its own electricity demand with renewables, however, some limitations exist with some trade-offs to realize the idea. These results aim to build a developmental vision of solar PV systems in Bali based on available land and the region’s irradiation.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1121
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

A reconfiguration technique using a switched-capacitor (SC)-based voltage equalizer differential power processing (DPP) concept is proposed in this paper for photovoltaic (PV) systems at a cell/subpanel/panel-level. The proposed active diffusion charge redistribution (ADCR) architecture increases the energy yield during mismatch and adds a voltage boosting capability to the PV system under no mismatch by connected the available PV cells/panels in series. The technique performs a reconfiguration by measuring the PV cell/panel voltages and their irradiances. The power balancing is achieved by charge redistribution through SC under mismatch conditions, e.g., partial shading. Moreover, PV cells/panels remain in series under no mismatch. Overall, this paper analyzes, simulates, and evaluates the effectiveness of the proposed DPP architecture through a simulation-based model prepared in PSIM. Additionally, the effectiveness is also demonstrated by comparing it with existing conventional DPP and traditional bypass diode architecture.


Author(s):  
Sharmin Rahman ◽  
Sajeeb Saha ◽  
Shama Naz Islam ◽  
M Arif ◽  
Mehdi Mosadeghy ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


Sign in / Sign up

Export Citation Format

Share Document