A simulation model of the application of the solar STAF panel heat transfer and noise reduction with and without a transparent plate: A renewable energy review

2020 ◽  
Vol 134 ◽  
pp. 110149 ◽  
Author(s):  
Dušan Strušnik ◽  
Daniel Brandl ◽  
Helmut Schober ◽  
Janko Ferčec ◽  
Jurij Avsec
2008 ◽  
Vol 594 ◽  
pp. 34-38
Author(s):  
Ji Guang Han ◽  
Yang Bai

By carefully researching and analyzing on cooling process of medium thickness steel plate, a mathematics model of heat transfer and its corresponding simulation model are established and evaluated with finite discrimination for a selected cooling object, and a simulation model is established. Through simulation and locate testing, the calculated values obtained are agreed very well with the measured ones. This indicates that the simulation model can preferably reveal the accelerated cooling process of medium thickness steel plate and can be applied to guide the manufacture of medium thickness steel plate.


Author(s):  
Xiaofeng Guo ◽  
Zhiqiang Guo ◽  
Qian Yang ◽  
Wei Dong

Abstract A numerical simulation model of electrothermal de-icing process on carbon fiber reinforced polymer (CFRP) composite is conducted to study the effect of thermal properties of the substrate on the ice melting process. A novel melting model which is based on the enthalpy-porosity method is applied to study the transient ice melting process and heat transfer of the de-icing sys-tem. Multi-layered electrothermal de-icing systems including composites with different fiber orientation are used to analyze the effects of orthotropic heat conductivity of the CFRP composite on the ice melting process and heat transfer. Movement of the ice-water interface, the melted zone thickness and the melted zone area on CFRP composite are investigated on the three-dimensional electrothermal de-icing unit. The effects of thermal properties of substrate on the temperature distribution of the ice-airfoil interface are analyzed. The computational results show that the thermal properties of substrates affect the temperature on the ice-airfoil interface, the temperature distribution in the substrate, ice melting area, ice melting rate and ice melting volume significantly. The time that ice starts to melt on the CFRP composite substrate is earlier than that on the metal substrate. However, it takes more time for the ice to melt completely on the ice-CFRP interface than that on the ice-metal inter-face. The orthotropic heat conductivity of CFRP composite results in strong directivity of the melting area on the ice-CFRP in-terface. A ratio parameter is defined to represent the matching degree of substrate materials and geometry model of de-icing system. The simulation model can be applied to study electrothermal de-icing system of nacelle inlet and airfoil made of composite. The results in present work is also helpful to predict the change of temperature during de-icing process and provide guidelines for the optimizing the electrothermal de-icing system to reduce power consumption according to the fiber structure of composite.


Author(s):  
M. A. Wahed ◽  
M. N. A. Hawlader

Attempts have been made to study an ice slurry generation system where two immiscible liquids, water and a coolant, are used to produce ice slurry by direct contact heat transfer. A mathematical model has been developed to evaluate the heat transfer phenomena between the coolant drops and the water in the ice slurry generation system. In this process, all the important variables that affect the direct contact heat transfer between these two fluids were incorporated into the simulation model to evaluate thermal performance of the system. Experiments were performed on an ice slurry generator using water and an immiscible liquid coolant, Fluroinert FC-84. The coolant at about −10°C to −15°C was delivered to the top of the ice slurry generator containing water and collected from the bottom for recirculation. The measured temperature profiles of water in the ice slurry generator for different coolant flow rates (8 lit/min to 12 lit/min) showed a good agreement with those temperature profiles obtained from the simulation model. These results validated the simulation model developed for the ice slurry generator. The analysis showed that during sensible cooling, the estimated heat transfer coefficients between water and the coolant were in the range of 3.0 to 6.5 kW/m2 for coolant flow rates varying from 8 lit/min to 12 lit/min. Higher coolant flow rates also enhanced the ice formation process due to the increased heat transfer rate. In addition, it was also observed that the ice production increased significantly when the nozzle was placed at the bottom of the ice slurry generator.


Sign in / Sign up

Export Citation Format

Share Document