Simulation of Cooling Process of Medium Thickness Steel Plate

2008 ◽  
Vol 594 ◽  
pp. 34-38
Author(s):  
Ji Guang Han ◽  
Yang Bai

By carefully researching and analyzing on cooling process of medium thickness steel plate, a mathematics model of heat transfer and its corresponding simulation model are established and evaluated with finite discrimination for a selected cooling object, and a simulation model is established. Through simulation and locate testing, the calculated values obtained are agreed very well with the measured ones. This indicates that the simulation model can preferably reveal the accelerated cooling process of medium thickness steel plate and can be applied to guide the manufacture of medium thickness steel plate.

2014 ◽  
Vol 50 (6) ◽  
pp. 487-496 ◽  
Author(s):  
Shigemasa NAKAGAWA ◽  
Hisayoshi TACHIBANA ◽  
Yasunori KADOYA ◽  
Yoichi HARAGUCHI ◽  
Kazuaki KOBAYASHI ◽  
...  

2010 ◽  
Vol 638-642 ◽  
pp. 2706-2711
Author(s):  
J.M. Pyykkönen ◽  
David C. Martin ◽  
Mahesh C. Somani ◽  
P.T. Mäntylä

Recent trends in the production of high strength steel plate call for increasingly sophisticated thermo-mechanical treatment schedules, including the use of high rate accelerated cooling after finish rolling in order to achieve the desired microstructure and mechanical properties. Achieving the necessary cooling process control accuracy in such cases requires a sound understanding and description of the interactions between external heat transfer processes and changes in internal energy due to phenomena such as solid-state phase transformations. The thermal physical properties of the evolving microstructures of complex phase and martensitic steels vary greatly, and are strongly dependent on temperature and constituent phases. As a result, critical parameters such as thermal diffusivity cannot be accurately estimated without appropriate linkage to both phase transformation kinetics and temperature. In the present study, a numerical simulation has been developed to investigate the unsteady heat transfer and phase transformation behaviour of a moving steel plate during accelerated cooling. The simulation includes semi-empirical microstructure evolution sub-models, fitted to measured CCT data using non-linear regression. These are coupled to thermal-physical properties sub-models and thermal conduction calculations. A comprehensive suite of thermal boundary condition models which account for direct water cooling, forced convection film boiling, air cooling, radiation and heat transfer between plate and transport rollers are also included. The required equations for the plate temperature and microstructure evolution are solved numerically using a cell centred finite volume method, and the model has been validated by comparing simulated cooling stop temperatures with measurements obtained on the plate cooling section of an industrial plate mill. The predicted cooling stop temperatures of steel plates for different thicknesses, velocities and water flow rates are in good agreement with plant operational data.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5680
Author(s):  
Jing Xu ◽  
Guang Chen ◽  
Xiangjun Bao ◽  
Xin He ◽  
Qingyue Duan

Accurate prediction and control of the steel plate temperature in the laminar cooling process are very challenging. In this research, an experimental platform was built to measure the heat transfer characteristics of the steel plate in the process of matrix laminar spray cooling when the steel plate is one millimeter away from the upper surface. The “buried couple method” was used, including the cooling temperature and cooling rate. Then, the temperature and the integrated heat transfer coefficient at the steel plate surface were calculated by the time-sequential function method (TSFM). The obtained results show that the fast cooling stage under the water cooling condition occurred in the first 1.5 s, and the measuring point temperature decreased by 8%. The “re-reddening” phenomenon of the steel plate appeared with time, and the measuring point temperature increased by 37%. Second, the maximum calculated difference between the surface temperature and the measuring point temperature was 0.75 °C, and the integrated heat transfer coefficient conformed to the periodic boundary features. The comprehensive convective heat transfer coefficient on the surface was in agreement with the periodic boundary characteristics, and its value exhibited oscillatory attenuation with the cooling process, and the oscillatory peak period was about 6 seconds. Two methods, sequential function method (SFM) and finite difference method (FDM), were used to verify the correctness of TSFM.


Author(s):  
Jungho Lee ◽  
Cheong-Hwan Yu ◽  
Sang-Jin Park

Water spray cooling is an important technology which has been used in a variety of engineering applications for cooling of materials from high-temperature nominally up to 900°C, especially in steelmaking processes and heat treatment in hot metals. The effects of cooling water temperature on spray cooling are significant for hot steel plate cooling applications. The local heat flux measurements are introduced by a novel experimental technique in which test block assemblies with cartridge heaters and thermocouples are used to measure the heat flux distribution on the surface of hot steel plate as a function of heat flux gauge. The spray is produced from a fullcone nozzle and experiments are performed at fixed water impact density of G and fixed nozzle-to-target spacing. The results show that effects of water temperature on forced boiling heat transfer characteristics are presented for five different water temperatures between 5 to 45°C. The local heat flux curves and heat transfer coefficients are also provided to a benchmark data for the actual spray cooling of hot steel plate cooling applications.


Sign in / Sign up

Export Citation Format

Share Document