scholarly journals Stochastic RCM-driven cooling and heating energy demand analysis for residential building

2022 ◽  
Vol 153 ◽  
pp. 111764
Author(s):  
Chuyin Tian ◽  
Guohe Huang ◽  
Joseph M. Piwowar ◽  
Shin-Cheng Yeh ◽  
Chen Lu ◽  
...  
2020 ◽  
Vol 172 ◽  
pp. 08006
Author(s):  
Martin Kiil ◽  
Martin-Sven Käärid ◽  
Paul Klõšeiko ◽  
Karl-Villem Võsa ◽  
Raimo Simson ◽  
...  

This study analyses the effect of air circulation around diagonal tie connectors in precast sandwich panels on heating energy demand, energy performance value and heating costs of a sample residential building. Dynamic simulations were performed using 4 different climatic boundary conditions: Estonian test reference year, Estonian 48-year weather dataset as well as data from Eastern Germany and Northern Finland. The results show that the effect of the thermal bridge is most noticeable in total room heating energy demand (increase of 10.3%), while the influence on energy performance value was 1.1%. The relative increase of total room heating energy demand was similar (7.0-10.3%) in all studied climatic regions.


2014 ◽  
Vol 635 ◽  
pp. 165-168 ◽  
Author(s):  
Silvia Vilčeková ◽  
Anna Sedláková ◽  
Eva Kridlova-Burdova ◽  
Ladislav Ťažký

Nowadays, heating energy demand has become a significant estimator used during the design stage of any new building. The residential building sector consumes a significant amount of fossil fuel energy and thereby produces a large percentage of greenhouse gas emissions that contribute to global warming and climate change. The aim of the paper is analysis of thermo-physical and environmental parameters of proposed versions of exterior wall structures.


Author(s):  
Jeong-Gook Kim ◽  
Byung-Lip Ahn ◽  
Cheol-Yong Jang ◽  
Hak-Geun Jeong ◽  
Chan-Hoon Haan

2019 ◽  
Vol 9 (24) ◽  
pp. 5473 ◽  
Author(s):  
Cinzia Buratti ◽  
Elisa Moretti ◽  
Elisa Belloni ◽  
Michele Zinzi

In the last few decades, the attention of researchers has been focused on the characterization of aerogels in order to improve the thermal performance of transparent building envelopes. Granular aerogel is already spread in the market thanks to the easy manufacturing system, whereas the difficulty in producing monoliths without defects, cracks, and inhomogeneity limited the diffusion of monolithic aerogel systems. A new production process for the monolithic panels was developed at Union College (Schenectady, NY, USA); it is a rapid supercritical extraction technique which allows a reduction in production time (only a few hours) and results in less solvent waste. Panes with maximum dimensions of about 100 × 100 mm were fabricated and composed in a unique glazing system, with external dimensions 300 × 300 mm. The thermal characterization of the innovative monolithic aerogel glazing system (simple float glazing 4.7-mm-thick monolithic aerogel pane 15-mm-thick simple float glazing 4.7 mm thick), which was carried out by means of a Small Hot Box apparatus, showed a thermal transmittance value of about 1.1 W/(m2K). Data was used in dynamic simulations of a typical non-residential building. They showed that the new investigated solution allows a valuable reduction with respect to a low-e double glazing system in terms of heating energy demand (about 5–7% for Helsinki, 8–12% for Paris, and 10–15% for Turin), for different window-to-wall ratios.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


2019 ◽  
pp. 41-82
Author(s):  
Subhes C. Bhattacharyya

Author(s):  
H. Harter ◽  
B. Willenborg ◽  
W. Lang ◽  
T. H. Kolbe

Abstract. Reducing the demand for non-renewable resources and the resulting environmental impact is an objective of sustainable development, to which buildings contribute significantly. In order to realize the goal of reaching a climate-neutral building stock, it must first be analyzed and evaluated in order to develop optimization strategies. The life cycle based consideration and assessment of buildings plays a key role in this process. Approaches and tools already exist for this purpose, but they mainly take the operational energy demand of buildings and not a life cycle based approach into account, especially when assessing technical building services (TBS). Therefore, this paper presents and applies a methodical approach for the life cycle based assessment of the TBS of large residential building stocks, based on semantic 3D city models (CityGML). The methodical approach developed for this purpose describes the procedure for calculating the operational energy demand (already validated) and the heating load of the building, the dimensioning of the TBS components and the calculation of the life cycle assessment. The application of the methodology is illustrated in a case study with over 115,000 residential buildings from Munich, Germany. The study shows that the methodology calculates reliable results and that a significant reduction of the life cycle based energy demand can be achieved by refurbishment measures/scenarios. Nevertheless, the goal of achieving a climate-neutral building stock is a challenge from a life cycle perspective.


2017 ◽  
Vol 12 (1) ◽  
pp. 147-158 ◽  
Author(s):  
Petrit Ahmeti ◽  
Ilir Dalipi ◽  
Agon Basha ◽  
István Kistelegdi

2012 ◽  
Vol 47 ◽  
pp. 506-514 ◽  
Author(s):  
M. Kavgic ◽  
A. Summerfield ◽  
D. Mumovic ◽  
Z.M. Stevanovic ◽  
V. Turanjanin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document