Cytotoxicity and anti-inflammatory effect of a novel diminazene aceturate derivative in bovine mammary epithelial cells

Author(s):  
Fang Jia ◽  
Xiangjun Zhang ◽  
Weiwu Ma ◽  
Xueqiang Li ◽  
Xuezhang Zhou
2018 ◽  
Vol 34 (10) ◽  
pp. 1465-1469 ◽  
Author(s):  
Fabio Mastrogiovanni ◽  
Roberta Bernini ◽  
Loredana Basiricò ◽  
Umberto Bernabucci ◽  
Margherita Campo ◽  
...  

2020 ◽  
Author(s):  
Chongliang Bi ◽  
Shujiu Zhang ◽  
He Tang ◽  
Hui Li

Abstract Background Some research has indicated that selenium (Se) plays a significant role during mastitis. However the intracellular anti-inflammatory effect of Se is not fully clear. Due to the ability of Staphylococcus aureus ( S. aureus ) to internalize into host cell, in this study we explored whether Se could regulate inflammation induced by S. aureus through reactive oxygen species (ROS)-mediated NLRP3 inflammasome in bMECs. Result bMECs were treated with 8 μmol/L Na 2 SeO 3 for 12 h before infected with S. aureus for 2 h. Through flow cytometry, Western blot and qPCR analysis, ROS and NLRP3 imflammasome were detected. Result shown that the production of ROS was increased by S. aureus , Se exerted strong inhibitory effects on the production of ROS; The protein expression of NLRP3 inflammasome including NLRP3, ASC and Caspase-1 increased significantly after S. aureus infection, Se played an important role in regulating the expression of NLRP3, ASC and Caspase-1; To further investigate the anti-inflammatory effect of Se, the expression level of IL-1β associated molecule pro-IL-1β and IL-1β were detected. Result shown that the mRNA expression of IL-1β was up-regulated by S. aureus and after Se treatment the expression level of IL-1β mRNA was markedly down-regulated, meanwhile Se play a regulation effect on the protein expression of Pro-IL-1β and IL-1β. Conclusions Here we show that ROS is involved in bMECs inflammation induced by S. aureus and Se ameliorates S. aureus -induced inflammation through ROS-mediated NLRP3 pathway in bMECs.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1183
Author(s):  
Mst Mamuna Sharmin ◽  
Md Aminul Islam ◽  
Itsuki Yamamoto ◽  
Shin Taniguchi ◽  
Shinichi Yonekura

The conservation of mammary gland physiology by maintaining the maximum number of mammary epithelial cells (MECs) is of the utmost importance for the optimum amount of milk production. In a state of negative energy balance, palmitic acid (PA) reduces the number of bovine MECs. However, there is no effective strategy against PA-induced apoptosis of MECs. In the present study, 5-aminolevulinic acid (5-ALA) was established as a remedial agent against PA-induced apoptosis of MAC-T cells (an established line of bovine MECs). In PA-treated cells, the apoptosis-related genes BCL2 and BAX were down- and upregulated, respectively. The elevated expression of major genes of the unfolded protein response (UPR), such as CHOP, a proapoptotic marker (C/EBP homologous protein), reduced the viability of PA-treated MAC-T cells. In contrast, 5-ALA pretreatment increased and decreased BCL2 and BAX expression, respectively. Moreover, cleaved caspase-3 protein expression was significantly reduced in the 5-ALA-pretreated group in comparison with the PA group. The downregulation of major UPR-related genes, including CHOP, extended the viability of MAC-T cells pretreated with 5-ALA and also reduced the enhanced intensity of the PA-induced expression of phospho-protein kinase R-like ER kinase. Moreover, the enhanced expression of HO-1 (antioxidant gene heme oxygenase) by 5-ALA reduced PA-induced oxidative stress (OxS). HO-1 is not only protective against OxS but also effective against ER stress. Collectively, these findings offer new insights into the protective effects of 5-ALA against PA-induced apoptosis of bovine MECs.


2019 ◽  
Vol 86 (2) ◽  
pp. 177-180
Author(s):  
Jacqueline P. Kurz ◽  
Mark P. Richards ◽  
Matthew Garcia ◽  
Zhongde Wang

AbstractThis Research Communication addresses the hypothesis that exogenously administered phospholipase A2 (PLA2) affects the inflammatory responses of bovine mammary epithelial cells (bMEC) in vitro with the aim of providing preliminary justification of investigation into the uses of exogenously administered PLA2 to manage or treat bovine mastitis. Primary bMEC lines from 11 lactating Holstein dairy cows were established and the expression of 14 pro-inflammatory genes compared under unchallenged and lipopolysaccharide (LPS)-challenged conditions, with and without concurrent treatment with bovine pancreatic PLA2G1B, a secreted form of PLA2. No differences in the expression of these genes were noted between PLA2-treated and untreated bMEC under unchallenged conditions. Following LPS challenge, untreated bMEC exhibited significant downregulation of CXCL8, IL1B, CCL20, and CXCL1. In contrast, PLA2-treated bMEC exhibited significant downregulation of IL1B and CCL20 only. These findings indicate that exogenous PLA2 affects the expression of some pro-inflammatory factors in immune-stimulated bMEC, but does not influence the constitutive expression of these factors. Further investigation of the influence of exogenous PLA2 in the bovine mammary gland is justified.


Sign in / Sign up

Export Citation Format

Share Document