scholarly journals (-)-Epigallocatechin-3-gallate and hydroxytyrosol improved antioxidative and anti-inflammatory responses in bovine mammary epithelial cells

animal ◽  
2019 ◽  
Vol 13 (12) ◽  
pp. 2847-2856 ◽  
Author(s):  
L. Basiricò ◽  
P. Morera ◽  
D. Dipasquale ◽  
R. Bernini ◽  
L. Santi ◽  
...  
2019 ◽  
Vol 86 (2) ◽  
pp. 177-180
Author(s):  
Jacqueline P. Kurz ◽  
Mark P. Richards ◽  
Matthew Garcia ◽  
Zhongde Wang

AbstractThis Research Communication addresses the hypothesis that exogenously administered phospholipase A2 (PLA2) affects the inflammatory responses of bovine mammary epithelial cells (bMEC) in vitro with the aim of providing preliminary justification of investigation into the uses of exogenously administered PLA2 to manage or treat bovine mastitis. Primary bMEC lines from 11 lactating Holstein dairy cows were established and the expression of 14 pro-inflammatory genes compared under unchallenged and lipopolysaccharide (LPS)-challenged conditions, with and without concurrent treatment with bovine pancreatic PLA2G1B, a secreted form of PLA2. No differences in the expression of these genes were noted between PLA2-treated and untreated bMEC under unchallenged conditions. Following LPS challenge, untreated bMEC exhibited significant downregulation of CXCL8, IL1B, CCL20, and CXCL1. In contrast, PLA2-treated bMEC exhibited significant downregulation of IL1B and CCL20 only. These findings indicate that exogenous PLA2 affects the expression of some pro-inflammatory factors in immune-stimulated bMEC, but does not influence the constitutive expression of these factors. Further investigation of the influence of exogenous PLA2 in the bovine mammary gland is justified.


2016 ◽  
Vol 26 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Sukyung Kang ◽  
Jae Sung Lee ◽  
Hai Chon Lee ◽  
Michael C. Petriello ◽  
Bae Yong Kim ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yuxiang Shi ◽  
Wenpeng Zhao ◽  
Gang Liu ◽  
Tariq Ali ◽  
Peng Chen ◽  
...  

Abstract Background Klebsiella pneumoniae, an environmental pathogen causing mastitis in dairy cattle, is often resistant to antibiotics. K. pneumoniae was used as the host bacteria to support bacteriophage replication; 2 bacteriophages, CM8-1 and SJT-2 were isolated and considered to have therapeutic potential. In the present study, we determined the ability of these 2 bacteriophages to mitigate cytotoxicity, pathomorphological changes, inflammatory responses and apoptosis induced by K. pneumoniae (bacteriophage to K. pneumoniae MOI 1:10) in bovine mammary epithelial cells (bMECs) cultured in vitro. Results Bacteriophages reduced bacterial adhesion and invasion and cytotoxicity (lactate dehydrogenase release). Morphological changes in bMECs, including swelling, shrinkage, necrosis and hematoxylin and eosin staining of cytoplasm, were apparent 4 to 8 h after infection with K. pneumoniae, but each bacteriophage significantly suppressed damage and decreased TNF-α and IL-1β concentrations. K. pneumoniae enhanced mRNA expression of TLR4, NF-κB, TNF-α, IL-1β, IL-6, IL-8, caspase-3, caspase-9 and cyt-c in bMECs and increased apoptosis of bMECs, although these effects were mitigated by treatment with either bacteriophage for 8 h. Conclusions Bacteriophages CM8-1 and SJT-2 mitigated K. pneumoniae-induced inflammation in bMECs cultured in vitro. Therefore, the potential of these bacteriophages for treating mastitis in cows should be determined in clinical trials.


2018 ◽  
Vol 34 (10) ◽  
pp. 1465-1469 ◽  
Author(s):  
Fabio Mastrogiovanni ◽  
Roberta Bernini ◽  
Loredana Basiricò ◽  
Umberto Bernabucci ◽  
Margherita Campo ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Kai Wang ◽  
Xiao-Lu Jin ◽  
Xiao-Ge Shen ◽  
Li-Ping Sun ◽  
Li-Ming Wu ◽  
...  

Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivatedEscherichia coli,andStaphylococcus aureusexhibited significant decreases in cell viability while TNF-αand lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-αmRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis.


Sign in / Sign up

Export Citation Format

Share Document