scholarly journals In vitro antiviral effects of GS-441524 and itraconazole combination against feline infectious peritonitis virus

Author(s):  
Tomoyoshi Doki ◽  
Ken Takahashi ◽  
Nobuhisa Hasegawa ◽  
Tomomi Takano
Pathogens ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Tomoyoshi Doki ◽  
Tomoyo Tarusawa ◽  
Tsutomu Hohdatsu ◽  
Tomomi Takano

Background: The cationic amphiphilic drug U18666A inhibits the proliferation of type I FIPV in vitro. In this study, we evaluated the in vivo antiviral effects of U18666A by administering it to SPF cats challenged with type I FIPV. Methods: Ten SPF cats were randomly assigned to two experimental groups. FIPV KU-2 were inoculated intraperitoneally to cats. The control group was administered PBS, and the U18666A-treated group was administered U18666A subcutaneously at 2.5 mg/kg on day 0, and 1.25 mg/kg on days 2 and 4 after viral inoculation. Results: Two of the five control cats administered PBS alone developed FIP. Four of the five cats administered U18666A developed no signs of FIP. One cat that temporarily developed fever, had no other clinical symptoms, and no gross lesion was noted on an autopsy after the end of the experiment. The FIPV gene was detected intermittently in feces and saliva regardless of the development of FIP or administration of U18666A. Conclusions: When U18666A was administered to cats experimentally infected with type I FIPV, the development of FIP might be suppressed compared with the control group. However, the number of animals with FIP is too low to establish anti-viral effect of U18666A in cats.


1981 ◽  
Vol 108 (25) ◽  
pp. 535-537 ◽  
Author(s):  
L. Hitchcock ◽  
K. O'Reilly ◽  
J. Beesley

Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 576 ◽  
Author(s):  
Tomomi Takano ◽  
Kumi Satoh ◽  
Tomoyoshi Doki ◽  
Taishi Tanabe ◽  
Tsutomu Hohdatsu

Feline infectious peritonitis (FIP) is a viral disease with a high morbidity and mortality by the FIP virus (FIPV, virulent feline coronavirus). Several antiviral drugs for FIP have been identified, but many of these are expensive and not available in veterinary medicine. Hydroxychloroquine (HCQ) is a drug approved by several countries to treat malaria and immune-mediated diseases in humans, and its antiviral effects on other viral infections (e.g., SARS-CoV-2, dengue virus) have been confirmed. We investigated whether HCQ in association with interferon-ω (IFN-ω) is effective for FIPV in vitro. A total of 100 μM of HCQ significantly inhibited the replication of types I and II FIPV. Interestingly, the combination of 100 μM of HCQ and 104 U/mL of recombinant feline IFN-ω (rfIFN-ω, veterinary registered drug) increased its antiviral activity against type I FIPV infection. Our study suggested that HCQ and rfIFN-ω are applicable for treatment of FIP. Further clinical studies are needed to verify the combination of HCQ and rIFN-ω will be effective and safe treatment for cats with FIP.


2014 ◽  
Vol 95 (2) ◽  
pp. 393-402 ◽  
Author(s):  
Annelike Dedeurwaerder ◽  
Dominique A. J. Olyslaegers ◽  
Lowiese M. B. Desmarets ◽  
Inge D. M. Roukaerts ◽  
Sebastiaan Theuns ◽  
...  

The type I IFN-mediated immune response is the first line of antiviral defence. Coronaviruses, like many other viruses, have evolved mechanisms to evade this innate response, ensuring their survival. Several coronavirus accessory genes play a central role in these pathways, but for feline coronaviruses this has never to our knowledge been studied. As it has been demonstrated previously that ORF7 is essential for efficient replication in vitro and virulence in vivo of feline infectious peritonitis virus (FIPV), the role of this ORF in the evasion of the IFN-α antiviral response was investigated. Deletion of ORF7 from FIPV strain 79-1146 (FIPV-Δ7) rendered the virus more susceptible to IFN-α treatment. Given that ORF7 encodes two proteins, 7a and 7b, it was further explored which of these proteins is active in this mechanism. Providing 7a protein in trans rescued the mutant FIPV-Δ7 from IFN sensitivity, which was not achieved by addition of 7b protein. Nevertheless, addition of protein 7a to FIPV-Δ3Δ7, a FIPV mutant deleted in both ORF3 and ORF7, could no longer increase the replication capacity of this mutant in the presence of IFN. These results indicate that FIPV 7a protein is a type I IFN antagonist and protects the virus from the antiviral state induced by IFN, but it needs the presence of ORF3-encoded proteins to exert its antagonistic function.


Pathogens ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 412 ◽  
Author(s):  
Shing Wei Ng ◽  
Gayathri Thevi Selvarajah ◽  
Yoke Kqueen Cheah ◽  
Farina Mustaffa Kamal ◽  
Abdul Rahman Omar

Feline infectious peritonitis (FIP) is a fatal feline immune-mediated disease caused by feline infectious peritonitis virus (FIPV). Little is known about the biological pathways associated in FIP pathogenesis. This is the first study aiming to determine the phenotypic characteristics on the cellular level in relation to specific metabolic pathways of importance to FIP pathogenesis. Methods: The internalization of type II FIPV WSU 79-1146 in Crandell-Rees Feline Kidney (CrFK) cells was visualized using a fluorescence microscope, and optimization prior to phenotype microarray (PM) study was performed. Then, four types of Biolog Phenotype MicroArray™ plates (PM-M1 to PM-M4) precoated with different carbon and nitrogen sources were used to determine the metabolic profiles in FIPV-infected cells. Results: The utilization of palatinose was significantly low in FIPV-infected cells; however, there were significant increases in utilizing melibionic acid, L-glutamine, L-glutamic acid and alanyl-glutamine (Ala-Gln) compared to non-infected cells. Conclusion: This study has provided the first insights into the metabolic profiling of a feline coronavirus infection in vitro using PMs and deduced that glutamine metabolism is one of the essential metabolic pathways for FIPV infection and replication. Further studies are necessary to develop strategies to target the glutamine metabolic pathway in FIPV infection.


1981 ◽  
Vol 18 (2) ◽  
pp. 256-265 ◽  
Author(s):  
J. F. Evermann ◽  
L. Baumgartener ◽  
R. L. Ott ◽  
E. V. Davis ◽  
A. J. McKeirnan

A virus isolated in cell culture from the spleen of a cat with feline infectious peritonitis was identified by physicochemical, morphological and antigenic criteria as a coronavirus. The feline infectious peritonitis virus was compared in vitro with canine coronavirus, a reported enteric pathogen of dogs. The feline isolate was characterized, by chloroform sensitivity and resistance to 5-iododeoxyuridine, respectively, as containing essential lipid and an RNA genome. Other traits of the isolate included resistance to acidic conditions, heat lability, and resistance to trypsin. Electron microscopy showed viral particles with a structure consistent with that of the prototype of the coronavirus group, infectious bronchitis virus. Indirect immunofluorescence with canine coronavirus monospecific antiserum showed the viral isolate to be antigenically related to canine coronavirus. Specific-pathogen-free cats inoculated by various routes with cell-culture-propagated virus had both clinical symptoms and lesions consistent with feline infectious peritonitis.


Sign in / Sign up

Export Citation Format

Share Document