Raman spectroscopic identification of arsenate minerals in situ at outcrops with handheld (532 nm, 785 nm) instruments

Author(s):  
Adam Culka ◽  
Helena Kindlová ◽  
Petr Drahota ◽  
Jan Jehlička
2021 ◽  
Vol 403 ◽  
pp. 123951
Author(s):  
Vladimir Zholobenko ◽  
Frank Rutten ◽  
Aleksey Zholobenko ◽  
Amy Holmes

Holzforschung ◽  
2020 ◽  
Vol 74 (11) ◽  
pp. 1043-1051
Author(s):  
Åke Henrik-Klemens ◽  
Katarina Abrahamsson ◽  
Charlotte Björdal ◽  
Alexandra Walsh

AbstractThe weakened microstructure of archaeological wood (AW) objects from waterlogged environments necessitates consolidation to avoid anisotropic shrinkage upon drying. Polymer impregnation through submergence or spraying treatments is commonly applied, and for larger and thicker objects, the impregnation period can stretch over decades. Thus, for efficient treatment, continuous monitoring of the impregnation status is required. Today, such monitoring is often destructive and expensive, requiring segments for extraction and chromatographic quantification. This study proposes an in situ Raman spectroscopic method for quantification of polyethylene glycol (PEG) in waterlogged AW. A calibration model was built on standards of PEG, cellulose powder, and milled wood lignin using orthogonal partial least squares (OPLS). The OPLS model had a strong linear relationship, and the PEG content in wood of varying degrees of degradation could be determined. However, the accuracy of the model was low with a root mean square error of prediction of 11 wt%. The low accuracy was traced to the heterogeneity in the calibration and validation set samples with regard to the small probing volume of the confocal instrumental setup.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yusuke Hiejima ◽  
Takumitsu Kida ◽  
Koh-hei Nitta

AbstractIn situ Raman spectroscopy is applied for polyethylene solid under various environments to elucidate the morphological and conformational changes. The trans conformation retains up to higher temperature for high-density polyethylene, reflecting higher stability of the orthorhombic crystals composed of stacked trans chains. It is suggested that the conversion of the non-crystalline trans chains to the crystalline phase is the microscopic origin of thermal history in the crystallinity, whereas the transformation between the trans and gauche conformers is practically in thermal equilibrium. Microscopic and dynamic mechanism of deformation during uniaxial stretching is investigated for the molecular orientation and the microscopic load sharing on the crystalline and amorphous chains. Lower crystallinity results in smoother and higher orientation toward the stretching direction, as well as higher load on the amorphous chains, during tensile elongation.


RSC Advances ◽  
2016 ◽  
Vol 6 (65) ◽  
pp. 60152-60159 ◽  
Author(s):  
Zhiyun Zhang ◽  
Huiyuan Guo ◽  
Yingqing Deng ◽  
Baoshan Xing ◽  
Lili He

A surface enhanced Raman spectroscopic (SERS) mapping technique was applied to qualitatively detect and characterize gold nanoparticles on and in spinach leaves in situ.


2017 ◽  
Vol 68 (4) ◽  
pp. 873-878
Author(s):  
Alexandru Dandocsi ◽  
Anca Nemuc ◽  
Cristina Marin ◽  
Simona Andrei

An intensive measurement campaign was performed during September 2014 in southern Romania in two different locations: Magurele, Ilfov County and Turceni, Gorj County. This paper presents one case study with analysis of the aerosol properties from in-situ, passive remote sensing and active remote sensing measurements. A Multiwavelength Raman Lidar (RALI) provided one hour averaged vertical profiles of extinction and backscatter from the 532 nm and 1064 nm channels in Magurele. The UV scanning Lidar (MILI) provided one hour averaged backscattered and extinction vertical profiles for Turceni. Planetary Boundary Layer Height (PBLH) was calculated using the altitude of the maximum negative gradient of the range corrected signal. Mass concentrations for different aerosol species (organics, nitrate, sulphate, ammonium and chloride) were obtained from in-situ measurements using Aerosol Mass Spectrometer located in M�gurele and Aerosol Chemical Speciation Monitor (ACSM) located in Turceni.


1981 ◽  
Vol 68 (2) ◽  
pp. 93-94 ◽  
Author(s):  
A. M�ller ◽  
R. R. Filgueira ◽  
W. Jaegermann ◽  
S. Che

Sign in / Sign up

Export Citation Format

Share Document