Enhancing the peroxidase activity and decreasing the protease activity of ficin with rational modification and its application to one-step colorimetric detection of glucose

Author(s):  
Yijuan Long ◽  
Wen Zheng ◽  
Danyang Yi ◽  
Yadi Pan ◽  
Huzhi Zheng
2018 ◽  
Vol 22 (09n10) ◽  
pp. 935-943 ◽  
Author(s):  
Yan Gao ◽  
Chunqiao Jin ◽  
Miaomiao Chen ◽  
Xixi Zhu ◽  
Min Fu ◽  
...  

Hydrogen peroxide detection has been widely applied in the fields of biology, medicine, and chemistry. Colorimetric detection of hydrogen peroxide has proven to be a fast and convenient method. In this work, 5,10,15,20-tetrakis(4-chlorophenyl) porphyrin modified Co[Formula: see text]S[Formula: see text] nanocomposites (H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] were prepared via a facile one-step hydrothermal method. H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] nanocomposites were demonstrated to possess an enhanced mimetic peroxidase activity toward the substrate, 3,3[Formula: see text],5,5[Formula: see text]-tetramethylbenzidine (TMB), which can be oxidized to oxTMB (oxidized TMB) in a buffer solution of hydrogen peroxide with a color change from colorless to blue. The catalytic activity of H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] was further analyzed by steady-state kinetics, and H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] had high affinity towards both TMB and H[Formula: see text]O[Formula: see text]. Furthermore, fluorescence and ESR data revealed that the catalytic mechanism of the peroxidase activity of H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] is due to hydroxyl radicals generated from decomposition of H[Formula: see text]O[Formula: see text]. Based on the catalytic activity of H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text], a sensitive colorimetric sensor of H[Formula: see text]O[Formula: see text] with a detection limit of 6.803 [Formula: see text]M as well as a range of 7–100 [Formula: see text]M was designed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Guo ◽  
Shuhan You ◽  
Changmei Li ◽  
Tiantian Chen ◽  
Xiudan Wang

The global food waste problem, especially aquatic product spoilage, stimulates the accurate freshness analysis of food products. However, it still remains a great challenge to realize in-field determination of fish freshness at the time of use. In the present study, a colorimetric enzyme biosensor was developed for one-step detection of hypoxanthine (Hx), which is an important intermediate of adenosine triphosphate decomposition during fish storage. We demonstrate that xanthine oxidase grade I ammonium sulfate suspension (XOD-ASS) possesses peroxidase activity. It can oxidize different peroxidase substrates, including 3,3′,5,5′-tetramethylbenzidine, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, and o-phenylenediamine in the presence of H2O2, producing visible color reactions. Further experiments indicate that XOD-ASS displayed effective peroxidase activity and could be used for H2O2 detection. Based on this, a one-step Hx detection method was established using only XOD-ASS as the catalyst. The method displays a good linear relationship in the range from 20 to 100 μM with a detection limit of 6.93 μM. Additionally, we successfully applied this method in testing Hx accumulation in sea bass fish samples of different storage times. The recovery values range from 97.44 to 102.56%. It is exciting to note that, compared with other methods, our proposed method provides a robust advantage on the economic reaction system, ease of preparation, short time consumption, and moderate reaction temperature. We believe that this method shows good application prospects for on-site fish freshness determination.


Author(s):  
Guizeng Yang ◽  
Yi Lu ◽  
Yi Li ◽  
Meihui Ying ◽  
Haibo Pan ◽  
...  

Due to the specific spinel structure, ternary oxide with multi-catalytic sites at high-active exposed surface is recommended to an alternative bio-catalyst. Spinel zinc vanadate with two- dimentional nanosheets (Zn3V3O8 NSs)...


2018 ◽  
Vol 42 (2) ◽  
pp. 1501-1509 ◽  
Author(s):  
Xixi Zhu ◽  
Wei Chen ◽  
Kaili Wu ◽  
Hongyu Li ◽  
Min Fu ◽  
...  

Schematic of the colorimetric detection of H2O2 catalyzed using Co3O4–MMT NPs.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yan Li ◽  
Yuhui Weng ◽  
Shikong Lu ◽  
Meihua Xue ◽  
Bixia Yao ◽  
...  

In this paper, N, Fe-codoped carbon dots (N, Fe-CDs) were synthesized from β-cyclodextrin, ethylenediamine, and ferric chloride for the first time using a convenient one-step hydrothermal method. The obtained N, Fe-CDs were characterized by various methods including transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The N, Fe-CDs exhibited better catalytic activity than horseradish peroxidase (HRP) and caused an evident color change for 3,3′,5,5′-tetramethylbenzidine in the presence of H2O2. Kinetic experiments show that the apparent Km value for the N, Fe-CDs with TMB (0.40 mM) or H2O2 (0.35 mM) as the substrate was lower than that of HRP (0.43 and 3.70 mM), suggesting that the N, Fe-CDs have a much higher affinity for TMB and H2O2 than HRP. The Km/Vmax value for the N, Fe-CDs (21.74×103·s for H2O2) is significantly lower than that for HRP (42.53×103·s), suggesting that the N, Fe-CDs have a stronger catalytic efficiency for H2O2 than HRP. Furthermore, a highly efficient and sensitive colorimetric detection method for glucose was developed using the N, Fe-CDs as mimic peroxidase to detect the hydrogen peroxide generated by the oxidation of glucose by glucose oxidase. The limit of detection for H2O2 and glucose was found to be 0.52 and 3.0 μM, respectively. The obtained N, Fe-codoped carbon dots, which possess simulated peroxidase activity, can potentially be used in the field of biotechnology.


Sign in / Sign up

Export Citation Format

Share Document