Development of a non-destructive methodology using ATR-FTIR and chemometrics to discriminate wild silk species in heritage collections

Author(s):  
Louise de Palaminy ◽  
Céline Daher ◽  
Christophe Moulherat
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1052
Author(s):  
Ida Kraševec ◽  
Nataša Nemeček ◽  
Maja Lozar Štamcar ◽  
Irena Kralj Cigić ◽  
Helena Prosen

Wood is a natural polymeric material that is an important constituent of many heritage collections. Because of its susceptibility to biodegradation, it is often chemically treated with substances that can be harmful to human health. One of the most widely used wood preservatives was pentachlorophenol (PCP), which is still present in museum objects today, although its use has been restricted for about forty years. The development of non-destructive methods for its determination, suitable for the analysis of valuable objects, is therefore of great importance. In this work, two non-destructive solid-phase microextraction (SPME) methods were developed and optimized, using either headspace or contact mode. They were compared with a destructive solvent extraction method and found to be suitable for quantification in the range of 7.5 to 75 mg PCP/kg wood at room temperature. The developed semi-quantitative methods were applied in the wooden furniture depot of National Museum of Slovenia. PCP was detected inside two furniture objects using headspace mode. The pesticide lindane was also detected in one object. The indoor air of the depot with furniture was also sampled with HS SPME, and traces of PCP were found. According to the results, SPME methods are suitable for the detection of PCP residues in museum objects and in the environment.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Rose King ◽  
Josep Grau-Bové ◽  
Katherine Curran

AbstractPlasticiser loss is a topic frequently mentioned in discussions on the degradation of plastic artefacts in museum collections, particularly for plasticised poly (vinyl chloride) and cellulose acetate. Plasticisers may migrate to the plastic’s surface and remain as a deposit, or volatilise into the surrounding environment, both presenting an aesthetic issue and impacting the future stability of the plastic. This paper draws on the work of conservation science, materials degradation, and indoor air quality/emissions studies, to review our current understanding of plasticiser loss. The influence of the material’s intrinsic properties, and environmental factors on migration rates are discussed and related to preventive conservation practices. The methods by which plasticiser migration is studied, including characterisation, are also reviewed, with a particular focus on minimally invasive and non-destructive methods suitable for heritage science research.


Author(s):  
J W Steeds

There is a wide range of experimental results related to dislocations in diamond, group IV, II-VI, III-V semiconducting compounds, but few of these come from isolated, well-characterized individual dislocations. We are here concerned with only those results obtained in a transmission electron microscope so that the dislocations responsible were individually imaged. The luminescence properties of the dislocations were studied by cathodoluminescence performed at low temperatures (~30K) achieved by liquid helium cooling. Both spectra and monochromatic cathodoluminescence images have been obtained, in some cases as a function of temperature.There are two aspects of this work. One is mainly of technological significance. By understanding the luminescence properties of dislocations in epitaxial structures, future non-destructive evaluation will be enhanced. The second aim is to arrive at a good detailed understanding of the basic physics associated with carrier recombination near dislocations as revealed by local luminescence properties.


Author(s):  
R.F. Sognnaes

Sufficient experience has been gained during the past five years to suggest an extended application of microreplication and scanning electron microscopy to problems of forensic science. The author's research was originally initiated with a view to develop a non-destructive method for identification of materials that went into objects of art, notably ivory and ivories. This was followed by a very specific application to the identification and duplication of the kinds of materials from animal teeth and tusks which two centuries ago went into the fabrication of the ivory dentures of George Washington. Subsequently it became apparent that a similar method of microreplication and SEM examination offered promise for a whole series of problems pertinent to art, technology and science. Furthermore, what began primarily as an application to solid substances has turned out to be similarly applicable to soft tissue surfaces such as mucous membranes and skin, even in cases of acute, chronic and precancerous epithelial surface changes, and to post-mortem identification of specific structures pertinent to forensic science.


2013 ◽  
Vol 64 (2) ◽  
pp. 21001 ◽  
Author(s):  
Jean-Luc Bodnar ◽  
Jean-Jacques Metayer ◽  
Kamel Mouhoubi ◽  
Vincent Detalle

1984 ◽  
Vol 72 (8-9) ◽  
pp. 339-343
Author(s):  
René Hoeg ◽  
Lars Taarnskov
Keyword(s):  

1953 ◽  
Vol 50 (2) ◽  
pp. 136-138 ◽  
Author(s):  
Georges Ambrosino ◽  
Pierre Pindrus
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document