scholarly journals Mapping Spatial Variations of Land Cover in a Coastal Landscape Using Pattern Metrics

2014 ◽  
Vol 120 ◽  
pp. 23-30 ◽  
Author(s):  
Hakan Alphan ◽  
Nil Çelik
2019 ◽  
Vol 16 (19) ◽  
pp. 3801-3834 ◽  
Author(s):  
Alberto V. Borges ◽  
François Darchambeau ◽  
Thibault Lambert ◽  
Cédric Morana ◽  
George H. Allen ◽  
...  

Abstract. We carried out 10 field expeditions between 2010 and 2015 in the lowland part of the Congo River network in the eastern part of the basin (Democratic Republic of the Congo), to describe the spatial variations in fluvial dissolved carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) concentrations. We investigate the possible drivers of the spatial variations in dissolved CO2, CH4 and N2O concentrations by analyzing covariations with several other biogeochemical variables, aquatic metabolic processes (primary production and respiration), catchment characteristics (land cover) and wetland spatial distributions. We test the hypothesis that spatial patterns of CO2, CH4 and N2O are partly due to the connectivity with wetlands, in particular with a giant wetland of flooded forest in the core of the Congo basin, the “Cuvette Centrale Congolaise” (CCC). Two transects of 1650 km were carried out from the city of Kisangani to the city of Kinshasa, along the longest possible navigable section of the river and corresponding to 41 % of the total length of the main stem. Additionally, three time series of CH4 and N2O were obtained at fixed points in the main stem of the middle Congo (2013–2018, biweekly sampling), in the main stem of the lower Kasaï (2015–2017, monthly sampling) and in the main stem of the middle Oubangui (2010–2012, biweekly sampling). The variations in dissolved N2O concentrations were modest, with values oscillating around the concentration corresponding to saturation with the atmosphere, with N2O saturation level (%N2O, where atmospheric equilibrium corresponds to 100 %) ranging between 0 % and 561 % (average 142 %). The relatively narrow range of %N2O variations was consistent with low NH4+ (2.3±1.3 µmol L−1) and NO3- (5.6±5.1 µmol L−1) levels in these near pristine rivers and streams, with low agriculture pressure on the catchment (croplands correspond to 0.1 % of catchment land cover of sampled rivers), dominated by forests (∼70 % of land cover). The covariations in %N2O, NH4+, NO3- and dissolved oxygen saturation level (%O2) indicate N2O removal by soil or sedimentary denitrification in low O2, high NH4+ and low NO3- environments (typically small and organic matter rich streams) and N2O production by nitrification in high O2, low NH4+ and high NO3- (typical of larger rivers that are poor in organic matter). Surface waters were very strongly oversaturated in CO2 and CH4 with respect to atmospheric equilibrium, with values of the partial pressure of CO2 (pCO2) ranging between 1087 and 22 899 ppm (equilibrium ∼400 ppm) and dissolved CH4 concentrations ranging between 22 and 71 428 nmol L−1 (equilibrium ∼2 nmol L−1). Spatial variations were overwhelmingly more important than seasonal variations for pCO2, CH4 and %N2O as well as day–night variations for pCO2. The wide range of pCO2 and CH4 variations was consistent with the equally wide range of %O2 (0.3 %–122.8 %) and of dissolved organic carbon (DOC) (1.8–67.8 mg L−1), indicative of generation of these two greenhouse gases from intense processing of organic matter either in “terra firme” soils, wetlands or in-stream. However, the emission rate of CO2 to the atmosphere from riverine surface waters was on average about 10 times higher than the flux of CO2 produced by aquatic net heterotrophy (as evaluated from measurements of pelagic respiration and primary production). This indicates that the CO2 emissions from the river network were sustained by lateral inputs of CO2 (either from terra firme or from wetlands). The pCO2 and CH4 values decreased and %O2 increased with increasing Strahler order, showing that stream size explains part of the spatial variability of these quantities. In addition, several lines of evidence indicate that lateral inputs of carbon from wetlands (flooded forest and aquatic macrophytes) were of paramount importance in sustaining high CO2 and CH4 concentrations in the Congo river network, as well as driving spatial variations: the rivers draining the CCC were characterized by significantly higher pCO2 and CH4 and significantly lower %O2 and %N2O values than those not draining the CCC; pCO2 and %O2 values were correlated to the coverage of flooded forest on the catchment. The flux of greenhouse gases (GHGs) between rivers and the atmosphere averaged 2469 mmol m−2 d−1 for CO2 (range 86 and 7110 mmol m−2 d−1), 12 553 µmol m−2 d−1 for CH4 (range 65 and 597 260 µmol m−2 d−1) and 22 µmol m−2 d−1 for N2O (range −52 and 319 µmol m−2 d−1). The estimate of integrated CO2 emission from the Congo River network (251±46 TgC (1012 gC) yr−1), corresponding to nearly half the CO2 emissions from tropical oceans globally (565 TgC yr−1) and was nearly 2 times the CO2 emissions from the tropical Atlantic Ocean (137 TgC yr−1). Moreover, the integrated CO2 emission from the Congo River network is more than 3 times higher than the estimate of terrestrial net ecosystem exchange (NEE) on the whole catchment (77 TgC yr−1). This shows that it is unlikely that the CO2 emissions from the river network were sustained by the hydrological carbon export from terra firme soils (typically very small compared to terrestrial NEE) but most likely, to a large extent, they were sustained by wetlands (with a much higher hydrological connectivity with rivers and streams).


2011 ◽  
Vol 27 (1) ◽  
pp. 133-149 ◽  
Author(s):  
Elizabeth M. Hassett ◽  
Stephen V. Stehman ◽  
James D. Wickham

2018 ◽  
Vol 11 (2) ◽  
pp. 5-30
Author(s):  
Alvin Spivey ◽  
Anthony Vodacek

Abstract A factor analysis of 67 landscape pattern metrics was performed to quantify the ability of landscape pattern metrics to explain land cover pattern, and to report individual landscape pattern metric values that are statistically independent. This land cover pattern is measured from 7.68 x 7.68 [km] GeoTiff image tiles of the conterminous United States Geological Survey (USGS) 1992 National Land Cover Dataset (NCLD). Using factor analysis to rank independent landscape pattern information, each landscape pattern metric produces the explanatory power of that landscape pattern metric amongst the other 66 landscape pattern metrics—any landscape pattern metrics that report similar values contribute redundant information. The metrics that contribute the most information are Jackson’s Contagion statistic (P005), typically contributing to 97 % of the explained variability; the Fourier Metric of Fragmentation (FMF), typically contributing to 65 % of the explained variability; and average LCLU class lacunarity (TLAC), typically contributing to 62 % of the explained variability. Two other Fourier-based landscape pattern metrics we tested, the Least Squares Fourier Transform Fractal Dimension Estimation (LsFT) and the Fourier Metric of Proportion (FMP), contributed 50 % and 12 % to the explained variability, respectively. In addition, the values reported by each of the Fourier metrics are revealed to be relatively independent amongst commonly used landscape pattern metrics and are thus demonstrated to be appropriate for explaining general landscape pattern variability.


2020 ◽  
Author(s):  
Erika E. Lentz ◽  
Sara L. Zeigler ◽  
E. Robert Thieler ◽  
Nathaniel G. Plant

Abstract Context Coastal landscapes evolve in response to sea-level rise (SLR) through a variety of geologic processes and ecological feedbacks. When the SLR rate surpasses the rate at which these processes build elevation and drive lateral migration, inundation is likely. Objectives To examine the role of land cover diversity and composition in landscape response to SLR across the northeastern United States. Methods Using an existing probabilistic framework, we quantify the probability of inundation, a measure of vulnerability, under different SLR scenarios on the coastal landscape. Resistant areas—wherein a dynamic response is anticipated—are defined as unlikely (p < 0.33) to inundate. Results are assessed regionally for different land cover types and at 26 sites representing varying levels of land cover diversity. Results Modeling results suggest that by the 2050s, 44% of low-lying, habitable land in the region is unlikely to inundate, further declining to 36% by the 2080s. In addition to a decrease in SLR resistance with time, these results show an increasing uncertainty that the coastal landscape will continue to evolve in response to SLR as it has in the past. We also find that resistance to SLR is correlated with land cover composition, wherein sites containing land cover types adaptable to SLR impacts show greater potential to undergo biogeomorphic state shifts rather than inundating with time. Conclusions Our findings support other studies that have highlighted the importance of ecological composition and diversity in stabilizing the physical landscape and suggest that flexible planning strategies, such as adaptive management, are particularly well suited for SLR preparation in diverse coastal settings.


2021 ◽  
Vol 13 (16) ◽  
pp. 8840
Author(s):  
Raquel Faria de Deus ◽  
José António Tenedório

In this study, past and current land-use and land-cover (LULC) change trajectories between 1947 and 2018 were analysed in terms of sustainability using a unique set of nine detailed, high-precision LULC thematic maps for the municipality of Portimão (Algarve region), Portugal. Several Geographic Information System (GIS)-based spatial analysis techniques were used to process LULC data and assess the spatiotemporal dynamics of LULC change processes. The dynamics of LULC change were explored by analysing LULC change trajectories. In addition, spatial pattern metrics were introduced to further investigate and quantify the spatial patterns of such LULC change trajectories. The findings show that Portimão has been experiencing complex LULC changes. Nearly 52% of the study area has undergone an LULC change at least once during the 71-year period. The analysis of spatial pattern metrics on LULC change trajectories confirmed the emergence of more complex, dispersed, and fragmented shapes when patches of land were converted from non-built categories into artificial surface categories from 1947 to 2018. The combined analysis of long-term LULC sequences by means of LULC change trajectories and spatial pattern metrics provided useful, actionable, and robust empirical information that can support sustainable spatial planning and smart growth, which is much needed since the results of this study have shown that the pattern of LULC change trajectories in Portimão municipality has been heading towards unsustainability.


Sign in / Sign up

Export Citation Format

Share Document