scholarly journals Coastal Land-Use and Land-Cover Change Trajectories: Are They Sustainable?

2021 ◽  
Vol 13 (16) ◽  
pp. 8840
Author(s):  
Raquel Faria de Deus ◽  
José António Tenedório

In this study, past and current land-use and land-cover (LULC) change trajectories between 1947 and 2018 were analysed in terms of sustainability using a unique set of nine detailed, high-precision LULC thematic maps for the municipality of Portimão (Algarve region), Portugal. Several Geographic Information System (GIS)-based spatial analysis techniques were used to process LULC data and assess the spatiotemporal dynamics of LULC change processes. The dynamics of LULC change were explored by analysing LULC change trajectories. In addition, spatial pattern metrics were introduced to further investigate and quantify the spatial patterns of such LULC change trajectories. The findings show that Portimão has been experiencing complex LULC changes. Nearly 52% of the study area has undergone an LULC change at least once during the 71-year period. The analysis of spatial pattern metrics on LULC change trajectories confirmed the emergence of more complex, dispersed, and fragmented shapes when patches of land were converted from non-built categories into artificial surface categories from 1947 to 2018. The combined analysis of long-term LULC sequences by means of LULC change trajectories and spatial pattern metrics provided useful, actionable, and robust empirical information that can support sustainable spatial planning and smart growth, which is much needed since the results of this study have shown that the pattern of LULC change trajectories in Portimão municipality has been heading towards unsustainability.

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1105
Author(s):  
Dorcas Idowu ◽  
Wendy Zhou

Incessant flooding is a major hazard in Lagos State, Nigeria, occurring concurrently with increased urbanization and urban expansion rate. Consequently, there is a need for an assessment of Land Use and Land Cover (LULC) changes over time in the context of flood hazard mapping to evaluate the possible causes of flood increment in the State. Four major land cover types (water, wetland, vegetation, and developed) were mapped and analyzed over 35 years in the study area. We introduced a map-matrix-based, post-classification LULC change detection method to estimate multi-year land cover changes between 1986 and 2000, 2000 and 2016, 2016 and 2020, and 1986 and 2020. Seven criteria were identified as potential causative factors responsible for the increasing flood hazards in the study area. Their weights were estimated using a combined (hybrid) Analytical Hierarchy Process (AHP) and Shannon Entropy weighting method. The resulting flood hazard categories were very high, high, moderate, low, and very low hazard levels. Analysis of the LULC change in the context of flood hazard suggests that most changes in LULC result in the conversion of wetland areas into developed areas and unplanned development in very high to moderate flood hazard zones. There was a 69% decrease in wetland and 94% increase in the developed area during the 35 years. While wetland was a primary land cover type in 1986, it became the least land cover type in 2020. These LULC changes could be responsible for the rise in flooding in the State.


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 38
Author(s):  
Nick Martin

Climate and land use and land cover (LULC) changes will impact watershed-scale water resources. These systemic alterations will have interacting influences on water availability. A probabilistic risk assessment (PRA) framework for water resource impact analysis from future systemic change is described and implemented to examine combined climate and LULC change impacts from 2011–2100 for a study site in west-central Texas. Internally, the PRA framework provides probabilistic simulation of reference and future conditions using weather generator and water balance models in series—one weather generator and water balance model for reference and one of each for future conditions. To quantify future conditions uncertainty, framework results are the magnitude of change in water availability, from the comparison of simulated reference and future conditions, and likelihoods for each change. Inherent advantages of the framework formulation for analyzing future risk are the explicit incorporation of reference conditions to avoid additional scenario-based analysis of reference conditions and climate change emissions scenarios. In the case study application, an increase in impervious area from economic development is the LULC change; it generates a 1.1 times increase in average water availability, relative to future climate trends, from increased runoff and decreased transpiration.


Climate ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 83
Author(s):  
Geofrey Gabiri ◽  
Bernd Diekkrüger ◽  
Kristian Näschen ◽  
Constanze Leemhuis ◽  
Roderick van der Linden ◽  
...  

The impact of climate and land use/land cover (LULC) change continues to threaten water resources availability for the agriculturally used inland valley wetlands and their catchments in East Africa. This study assessed climate and LULC change impacts on the hydrological processes of a tropical headwater inland valley catchment in Uganda. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze climate and LULC change impacts on the hydrological processes. An ensemble of six regional climate models (RCMs) from the Coordinated Regional Downscaling Experiment for two Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were used for climate change assessment for historical (1976–2005) and future climate (2021–2050). Four LULC scenarios defined as exploitation, total conservation, slope conservation, and protection of headwater catchment were considered. The results indicate an increase in precipitation by 7.4% and 21.8% of the annual averages in the future under RCP4.5 and RCP8.5, respectively. Future wet conditions are more pronounced in the short rainy season than in the long rainy season. Flooding intensity is likely to increase during the rainy season with low flows more pronounced in the dry season. Increases in future annual averages of water yield (29.0% and 42.7% under RCP4.5 and RCP8.5, respectively) and surface runoff (37.6% and 51.8% under RCP4.5 and RCP8.5, respectively) relative to the historical simulations are projected. LULC and climate change individually will cause changes in the inland valley hydrological processes, but more pronounced changes are expected if the drivers are combined, although LULC changes will have a dominant influence. Adoption of total conservation, slope conservation and protection of headwater catchment LULC scenarios will significantly reduce climate change impacts on water resources in the inland valley. Thus, if sustainable climate-smart management practices are adopted, the availability of water resources for human consumption and agricultural production will increase.


Author(s):  
A. B. Rimba ◽  
T. Atmaja ◽  
G. Mohan ◽  
S. K. Chapagain ◽  
A. Arumansawang ◽  
...  

Abstract. Bali has been open to tourism since the beginning of the 20th century and is known as the first tourist destination in Indonesia. The Denpasar, Badung, Gianyar, and Tabanan (Sarbagita) areas experience the most rapid growth of tourism activity in Bali. This rapid tourism growth has caused land use and land cover (LULC) to change drastically. This study mapped the land-use change in Bali from 2000 to 2025. The land change modeller (LCM) tool in ArcGIS was employed to conduct this analysis. The images were classified into agricultural land, open area, mangrove, vegetation/forest, and built-up area. Some Landsat images in 2000 and 2015 were exploited in predicting the land use and land cover (LULC) change in 2019 and 2025. To measure the accuracy of prediction, Landsat 8 OLI images for 2019 were classified and tested to verify the LULC model for 2019. The Multi-Layer Perceptron (MLP) neural network was trained with two influencing factors: elevation and road network. The result showed that the built-up growth direction expanded from the Denpasar area to the neighbouring areas, and land was converted from agriculture, open area and vegetation/forest to built-up for all observation years. The built-up was predicted growing up to 43 % from 2015 to 2025. This model could support decision-makers in issuing a policy for monitoring LULC since the Kappa coefficients were more than 80% for all models.


2017 ◽  
Vol 9 (2) ◽  
pp. 75
Author(s):  
Usman Arsyad ◽  
Andang Suryana Soma ◽  
Wahyuni Wahyuni ◽  
Tita Rahayu Arief

This study aimed to analyze the compatibility between the land cover spatial pattern plan and determine the direction of land use in the event of a discrepancy. This research was conducted on the Kelara Upstream Watershed located in gowa and jeneponto using land cover maps generated from landsat imagery interpretation 8. Then overlay to map the spatial pattern plan. Then determined the order of land use is done when there is a discrepancy between the results of the overlay with maps of land cover spatial pattern plan. The result showed that 41,05% of the total area of the Kelara Upstream Watershed of 28.185,68 ha a land use form of a orchards. After overlay discovered discrepancy land cover maps with maps of spatial pattern plan. Based on a map spatial pattern plan that should in reality the field is man made forest, orchards, dryland agriculture and rice field. According to these condition the specified order of land use that is Hkm (Community Forest) with agroforestry and Agroforestry Systems. Rice field In the Protected and Production forest order to intensification land use and plantations forest, orchards and dry land agriculture order to Community Forest with agroforestry systems . In the area of cultivation the land use rice field, orchards and dryland agriculture order to agroforestry systems.


2019 ◽  
Author(s):  
Lang Wang ◽  
Amos P. K. Tai ◽  
Chi-Yung Tam ◽  
Mehliyar Sadiq ◽  
Peng Wang ◽  
...  

Abstract. Surface ozone (O3) is an important air pollutant and greenhouse gas. Land use and land cover (LULC) is one of the critical factors influencing ozone, in addition to anthropogenic emissions and climate. LULC change can on the one hand affect ozone biogeochemically, i.e., via dry deposition and biogenic emissions of volatile organic compounds (VOCs). LULC change can on the other hand alter regional- to large-scale climate through modifying albedo and evapotranspiration, which can lead to changes in surface temperature, hydrometeorology and atmospheric circulation that can ultimately impact ozone biogeophysically over local and remote areas. Such biogeophysical effects of LULC on ozone are largely understudied. This study investigates the individual and combined biogeophysical and biogeochemical effects of LULC on ozone, and explicitly examines the critical pathway for how LULC change impacts ozone pollution. A global coupled atmosphere–chemistry–land model is driven by projected LULC changes from the present day (2000) to future (2050) under RCP4.5 and RCP8.5 scenarios, focusing on the boreal summer. Results reveal that when considering biogeochemical effects only, surface ozone is predicted to have slight changes by up to 2 ppbv maximum in some areas due to LULC changes. It is primarily driven by changes in isoprene emission and dry deposition counteracting each other in shaping ozone. In contrast, when considering the integrated effect of LULC, ozone is more substantially altered by up to 6 ppbv over several regions, reflecting the importance of biogeophysical effects on ozone changes. Furthermore, large areas of these ozone changes are found over the regions without LULC changes where the biogeophysical effect is the only pathway for such changes. The mechanism is likely that LULC change induces a regional circulation response, in particular the formation of anomalous stationary high-pressure systems, shifting of moisture transport, and near-surface warming over the middle-to-high northern latitudes in boreal summer, owing to associated changes in albedo and surface energy budget. Such temperature changes then alter ozone substantially. We conclude that the biogeophysical effect of LULC is an important pathway for the influence of LULC change on ozone air quality over both local and remote regions, even in locations without significant LULC changes. Overlooking the impact of biogeophysical effect may cause evident underestimation of the impacts of LULC change on ozone pollution.


2021 ◽  
Vol 10 (12) ◽  
pp. 809
Author(s):  
Jing Sun ◽  
Suwit Ongsomwang

Land surface temperature (LST) is an essential parameter in the climate system whose dynamics indicate climate change. This study aimed to assess the impact of multitemporal land use and land cover (LULC) change on LST due to urbanization in Hefei City, Anhui Province, China. The research methodology consisted of four main components: Landsat data collection and preparation; multitemporal LULC classification; time-series LST dataset reconstruction; and impact of multitemporal LULC change on LST. The results revealed that urban and built-up land continuously increased from 2.05% in 2001 to 13.25% in 2020. Regarding the impact of LULC change on LST, the spatial analysis demonstrated that the LST difference between urban and non-urban areas had been 1.52 K, 3.38 K, 2.88 K and 3.57 K in 2001, 2006, 2014 and 2020, respectively. Meanwhile, according to decomposition analysis, regarding the influence of LULC change on LST, the urban and built-up land had an intra-annual amplitude of 20.42 K higher than other types. Thus, it can be reconfirmed that land use and land cover changes due to urbanization in Hefei City impact the land surface temperature.


Author(s):  
Raquel Faria de Deus ◽  
José António Tenedório ◽  
Jorge Rocha

In this chapter, a hybrid approach integrating cellular automata (CA), fuzzy logic, logistic regression, and Markov chains for modelling and prediction of land-use and land-cover (LULC) change at the local scale, using geographic information with fine spatial resolution is presented. A spatial logistic regression model was applied to determine the transition rules that were used by a conventional CA model. The overall dimension of LULC change was estimated using a Markov chain model. The proposed CA-based model (termed CAMLucc) in combination with physical variables and land-use planning data was applied to simulate LULC change in Portimão, Portugal between 1947 and 2010 and to predict its future spatial patterns for 2020 and 2025. The main results of this research show that Portimão has been facing massive growth in artificial surfaces, particularly near the main urban settlements and along the coastal area, and reveal an early and intensive urban sprawl over time.


BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yeneayehu Fenetahun ◽  
Wang Yong-dong ◽  
Yuan You ◽  
Xu Xinwen

Abstract Background The gradual conversion of rangelands into other land use types is one of the main challenges affecting the sustainable management of rangelands in Teltele. This study aimed to examine the changes, drivers, trends in land use and land cover (LULC), to determine the link between the Normalized Difference Vegetation Index (NDVI) and forage biomass and the associated impacts of forage biomass production dynamics on the Teltele rangelands in Southern Ethiopia. A Combination of remote sensing data, field interviews, discussion and observations data were used to examine the dynamics of LULC between 1992 and 2019 and forage biomass production. Results The result indicate that there is a marked increase in farm land (35.3%), bare land (13.8%) and shrub land (4.8%), while the reduction found in grass land (54.5%), wet land (69.3%) and forest land (10.5%). The larger change in land observed in both grassland and wetland part was observed during the period from 1995–2000 and 2015–2019, this is due to climate change impact (El-Niño) happened in Teltele rangeland during the year 1999 and 2016 respectively. The quantity of forage in different land use/cover types, grass land had the highest average amount of forage biomass of 2092.3 kg/ha, followed by wetland with 1231 kg/ha, forest land with 1191.3 kg/ha, shrub land with 180 kg/ha, agricultural land with 139.5 kg/ha and bare land with 58.1 kg/ha. Conclusions The significant linkage observed between NDVI and LULC change types (when a high NDVI value, the LULC changes also shows positive value or an increasing trend). In addition, NDVI value directly related to the greenness status of vegetation occurred on each LULC change types and its value directly linkage forage biomass production pattern with grassland land use types. 64.8% (grass land), 43.3% (agricultural land), 75.1% (forest land), 50.6% (shrub land), 80.5% (bare land) and 75.5% (wet land) more or higher dry biomass production in the wet season compared to the dry season.


2019 ◽  
Vol 33 (12) ◽  
pp. 4087-4103 ◽  
Author(s):  
Ike Sari Astuti ◽  
Kamalakanta Sahoo ◽  
Adam Milewski ◽  
Deepak R. Mishra

Sign in / Sign up

Export Citation Format

Share Document