Transcriptional reprogramming during Garcinia-type recalcitrant seed germination of Garcinia mangostana

2019 ◽  
Vol 257 ◽  
pp. 108727
Author(s):  
Hoe-Han Goh ◽  
Syuhaidah Abu Bakar ◽  
Nur Diyana Kamal Azlan ◽  
Zamri Zainal ◽  
Normah Mohd Noor
2020 ◽  
Vol 35 (4) ◽  
pp. 322-331
Author(s):  
José M. Herranz Sanz ◽  
Miguel A. Copete Carreño ◽  
Raquel Herranz Ferrer ◽  
Alejandro Santiago González ◽  
Elena Copete Carreño ◽  
...  

Bragantia ◽  
2013 ◽  
Vol 72 (3) ◽  
pp. 199-207 ◽  
Author(s):  
Camila Kissmann ◽  
Gustavo Habermann

In this descriptive paper, we described germination responses of Styrax pohlii, S. camporum and S. ferrugineus seeds at 5, 10, 15, 20, 25, 30, 35, 40 and 45 °C. We also assessed the percentage germination (%G) of S. pohlii seeds with different seed water contents because, as a forest species, it seems to have recalcitrant seed behavior. Intrigued by the capacity of seeds of this species to germinate directly from puddles formed on poorly drained soils of riparian forests, where it typically occurs, we also tested the effect of de-pulping fruits on germination of S. pohlii seeds under hypoxia and normoxia conditions. In addition, we checked whether distinct concentrations of gibberellic acid (GA3) could break S. ferrugineus seed dormancy, a typical seed behavior of Cerrado species. No germination occurred at 5, 40 and 45 °C, regardless of the species. The optimal temperature for germination was 20 °C for S. pohlii and 25 °C for S. camporum. However, S. ferrugineus seeds showed a very low %G, regardless of the temperature, and GA3 could not consistently break possible physiological seed dormancy. For S. pohlii seeds, the higher the seed desiccation the lower the %G, and fruit pulp removal showed to be essential for seed germination. S. pohlii seeds germinated independently of oxygenation conditions.


Data in Brief ◽  
2017 ◽  
Vol 14 ◽  
pp. 548-550 ◽  
Author(s):  
Nur Diyana Kamal Azlan ◽  
Mohd Noor Mat Isa ◽  
Zamri Zainal

Data in Brief ◽  
2018 ◽  
Vol 21 ◽  
pp. 2221-2223 ◽  
Author(s):  
Othman Mazlan ◽  
Wan Mohd Aizat ◽  
Nor Shahida Aziz Zuddin ◽  
Syarul Nataqain Baharum ◽  
Normah Mohd Noor

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 263
Author(s):  
Xi-Qing Sun ◽  
Yi-Gang Song ◽  
Bin-Jie Ge ◽  
Xi-Ling Dai ◽  
Gregor Kozlowski

Control of seed germination and dormancy is important in seed plant adaptation and evolution. When studying seed dormancy of Quercus species, we observed a substantially delayed shoot emergence following a fast root emergence in Quercus chungii F.P.Metcalf. Since epicotyl physiological dormancy (PD) has not been reported in Quercus section Cyclobalanopsis, we examined seed morphology and germination in Q. chungii and aimed to document epicotyl PD in the seeds. The embryo was fully developed in fresh ripe seeds. The elongating cotyledonary petiole pushed the embryo axis out of the seed during germination, which differed from observations in other Quercus species. Shoots emerged from seeds with developing roots after 3 months of warm stratification (35/25 °C), reaching the highest percentage of shoot emergence in seeds after 5 months. Seeds were recalcitrant and displayed a yet unreported epicotyl PD type, for which we propose the formula Cnd(root) ‒ Cp’’ 2b(shoot). Early emergence and development of the root system in Q. chungii seeds with epicotyl PD appears to be a mechanism to maintain a constant water supply to the shoot during plumule development and emergence. Our documentation of seed germination will provide guidance for the conservation and restoration of this species from seeds.


2018 ◽  
Author(s):  
Rajesh K. Gazara ◽  
Eduardo A. G. de Oliveira ◽  
Antônia Elenir A. Oliveira ◽  
Thiago M. Venancio

ABSTRACTGibberellins (GA) are key positive regulators of seed germination. Although the GA effects on seed germination have been studied in a number of species, little is known about the transcriptional reprogramming modulated by GA during this phase in species other than Arabidopsis thaliana. Here we report the transcriptome analysis of soybean embryonic axes during germination in the presence of paclobutrazol (PBZ), a GA biosynthesis inhibitor. We found a number of differentially expressed cell wall metabolism genes, supporting their roles in cell expansion during germination. Several genes involved in the biosynthesis and signaling of other phytohormones were also modulated, indicating an intensive hormonal crosstalk at the embryonic axis. We have also found 26 photosynthesis genes that are up-regulated by PBZ at 24 hours of imbibition (HAI) and down-regulated at 36 HAI, which led us to suggest that this is part of a strategy to implement an autotrophic growth program in the absence of GA-driven mobilization of reserves. Finally, 30 transcription factors (mostly from the MYB, bHLH and bZIP families) that are down-regulated by PBZ and are likely downstream GA targets that will drive transcriptional changes during germination.


Author(s):  
G.P. Gayatri ◽  
K.G. Ajith Kumar ◽  
Parvathy S. Nair ◽  
M. Somasekharan Pillai

Background: Seed recalcitrance is a major problem associated with many tropical plants, limiting their natural regeneration. Vateria indica L. is a vulnerable and endemic tree species in South-Western Ghats of India, which is also recalcitrant. ABA and gibberellins are the most important plant hormones required for seed germination. It is the balance between ABA and GA which is responsible for desiccation tolerance in orthodox seeds. Exogenous hormones pretreatment has been also reported to influence seed germination. But such studies had been sparsely done in the case of recalcitrant seeds. This study aims to find out whether GA/ABA antagonism in recalcitrant plants is operating in the same way, like that in the orthodox seeds.Methods: The effect of the exogenous pre-soaking application of phytohormones viz. GA3 and ABA individually as well as their combinations on seed germination and growth of Vateria indica L. were carried out in the present work. The seeds were collected from April to July 2018 and the experiment was designed at Post Graduate and Research Department of Botany, Government College for Women, Thiruvananthapuram. When different concentrations of each phytohormone were externally given to the seeds, ABA reduced the germination and growth in almost all the concentrations. But GA3 gave better results. When combinations of GA3 and ABA were used, germination was poor in the sample where ABA was more than GA3, But in samples with same concentrations of both the hormones and with more GA3 gave better results. Result: This study clearly showed that GA3 when given externally along with ABA, might have affected the endogenous ABA in this recalcitrant seed and suppressed its retarding effect. Thus ABA/GA antagonism is working out, here, in the same way as in orthodox seeds. Since the germination of recalcitrant seeds is a less investigated area, the present study will form a basis and a lot more for further such studies.


2021 ◽  
Author(s):  
Jie Pan ◽  
Huairen Zhang ◽  
Zhenping Zhan ◽  
Ting Zhao ◽  
Danhua Jiang

Seed germination is a critical developmental switch from a dormant state to active growth, which involves extensive changes in metabolism, gene expression and cellular identity. However, our understanding of epigenetic and transcriptional reprogramming during this process is limited. The histone H3 lysine 27 trimethylation (H3K27me3) plays a key role in regulating gene repression and cell fate specification. Here, we profile H3K27me3 dynamics and dissect the function of H3K27 demethylation during germination. Our temporal genome-wide profiling of H3K27me3 and transcription reveal delayed H3K27me3 reprogramming compared with transcriptomic changes during germination, with H3K27me3 changes mainly occurring when the embryo is entering into vegetative development. REF6-mediated H3K27 demethylation promotes germination but does not significantly contribute to H3K27me3 dynamics during germination, but rather stably establishes an H3K27me3-depleted state permissive to transcription. By analyzing REF6 genomic binding, we show that it is absent from mature embryo chromatin and gradually establishes occupancy during the course of germination to counteract increased PRC2 activity. Our study provides key insights into the dynamics of gene expression and H3K27me3 during seed germination and suggests the function of H3K27me3 in facilitating cell fate switch. Furthermore, we reveal the importance of H3K27 demethylation-established transcriptional competence in germination and likely other developmental processes.


2015 ◽  
Vol 58 ◽  
pp. 83-100 ◽  
Author(s):  
Selena Gimenez-Ibanez ◽  
Marta Boter ◽  
Roberto Solano

Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-l-isoleucine (JA-Ile), is perceived by the COI1–JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.


Sign in / Sign up

Export Citation Format

Share Document