scholarly journals Intermediate Epicotyl Physiological Dormancy in the Recalcitrant Seed of Quercus chungii F.P.Metcalf with the Elongated Cotyledonary Petiole

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 263
Author(s):  
Xi-Qing Sun ◽  
Yi-Gang Song ◽  
Bin-Jie Ge ◽  
Xi-Ling Dai ◽  
Gregor Kozlowski

Control of seed germination and dormancy is important in seed plant adaptation and evolution. When studying seed dormancy of Quercus species, we observed a substantially delayed shoot emergence following a fast root emergence in Quercus chungii F.P.Metcalf. Since epicotyl physiological dormancy (PD) has not been reported in Quercus section Cyclobalanopsis, we examined seed morphology and germination in Q. chungii and aimed to document epicotyl PD in the seeds. The embryo was fully developed in fresh ripe seeds. The elongating cotyledonary petiole pushed the embryo axis out of the seed during germination, which differed from observations in other Quercus species. Shoots emerged from seeds with developing roots after 3 months of warm stratification (35/25 °C), reaching the highest percentage of shoot emergence in seeds after 5 months. Seeds were recalcitrant and displayed a yet unreported epicotyl PD type, for which we propose the formula Cnd(root) ‒ Cp’’ 2b(shoot). Early emergence and development of the root system in Q. chungii seeds with epicotyl PD appears to be a mechanism to maintain a constant water supply to the shoot during plumule development and emergence. Our documentation of seed germination will provide guidance for the conservation and restoration of this species from seeds.

HortScience ◽  
2012 ◽  
Vol 47 (9) ◽  
pp. 1222-1227 ◽  
Author(s):  
Orlanda Cristina Barros Moreira ◽  
José Martins ◽  
Luís Silva ◽  
Mónica Moura

Prunus azorica is an Azorean endemic tree considered as a priority species for conservation. It is important as a laurel forest component, particularly at medium altitude, and as a food source for the endangered bird Pyrrhula murina. The best conditions for seed germination were investigated after removal of the outer layers of the fruit by determining the effect of 1) using stones or seeds; 2) stratification regime (six treatments and a control); 3) incubation temperature (four alternating temperature regimes); and 4) gibberellic acid concentration (three levels). This resulted in a fully factorial design with 168 (2 × 7 × 4 × 3) treatments with three replicates per treatment and 25 seeds per replicate. Cumulative germination percentages were determined at the end of the trial. Globally, there was a significant effect of endocarp removal (49% germination with seeds and 15% with stones). Both for stones and seeds, there was a significant effect of incubation temperature, stratification regime, and growth regulator concentration. Stones attained a maximum germination of ≈80% under several stratification treatments including cold (4 °C) or warm (20 °C) followed by cold and at 10/5 °C without the addition of a growth regulator. Seeds attained a maximum germination of greater than 90% without stratification at 10/5 or 15/10 °C without the addition of a growth regulator. During the stratification process, germination occurred only for seeds, particularly for longer treatments, for example, those corresponding to 3 or more months of stratification, including warm followed by cold (75% to 80%) or cold alone (77%). According to seed morphology and germination results, the seed appears to have a non-deep physiological dormancy. Seeds of P. azorica can thus be efficiently germinated after endocarp removal at temperatures of 10/5 or 15/10 °C with a daily light period of 12 hours. This protocol allowed producing hundreds of viable seedlings that were used in the reforestation of a laurel forest stand in a LIFE project.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Wei Zhang ◽  
Lian-Wei Qu ◽  
Jun Zhao ◽  
Li Xue ◽  
Han-Ping Dai ◽  
...  

The innate physiological dormancy of Tulipa thianschanica seeds ensures its survival and regeneration in the natural environment. However, the low percentage of germination restricts the establishment of its population and commercial breeding. To develop effective ways to break dormancy and improve germination, some important factors of seed germination of T. thianschanica were tested, including temperature, gibberellin (GA3) and/or kinetin (KT), cold stratification and sowing depth. The percentage of germination was as high as 80.7% at a constant temperature of 4 °C, followed by 55.6% at a fluctuating temperature of 4/16 °C, and almost no seeds germinated at 16 °C, 20 °C and 16/20 °C. Treatment with exogenous GA3 significantly improved the germination of seeds, but KT had a slight effect on the germination of T. thianschanica seeds. The combined treatment of GA3 and KT was more effective at enhancing seed germination than any individual treatment, and the optimal hormone concentration for the germination of T. thianschanica seeds was 100 mg/L GA3 + 10 mg/L KT. In addition, it took at least 20 days of cold stratification to break the seed dormancy of T. thianschanica. The emergence of T. thianschanica seedlings was the highest with 82.4% at a sowing depth of 1.5 cm, and it decreased significantly at a depth of >3.0 cm. This study provides information on methods to break dormancy and promote the germination of T. thianschanica seeds.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


2014 ◽  
Vol 56 (1) ◽  
pp. 77-91 ◽  
Author(s):  
Mieczysław Karaś

In the germinating rape embryo the columella and basal part of hypocotyl undergo earliest activation. Its first ultrastructural symptom is the appearance of numerous ER vesicles after 3-6 h of seed swelling. Their number is the highest in the external layers of the columella and decreases in basipetal direction. Dermatogen cells in the basal zone of the hypocotyl contain the greatest amount of ER structures, whereas decreasing amounts are found in both directions along the embryo axis and centripetally. Further changes in the ER spread in a similar order. The vesicles merge and form a tubular and plate-like ER. Then, they disappear and are replaced by tubular and vesicular forms. The changes in the ER are gradually followed by ultrastructural symptoms of activation of mitochondria, plastids and dictyosomes. The highest number of ER structures and other organelles accumulate in root cells shortly before piercing of the seed coat. After germination their amount decreases and remains almost stable.


2020 ◽  
Vol 30 (3) ◽  
pp. 199-205
Author(s):  
Tracy S. Hawkins

AbstractQuercus species are ecologically and economically important components of deciduous forests of the eastern United States. However, knowledge pertinent to a thorough understanding of acorn germination dynamics for these species is lacking. The objectives of this research were to determine dormancy break and germination requirements for acorns of two eastern United States bottomland species, Quercus nigra and Quercus phellos (Section Lobatae), and to present results within ecological and phylogenetic contexts. Three replicates of 50 acorns of each species received 0 (control), 6, 12 or 18 weeks of cold stratification, followed by incubation in alternating temperature regimes of 15/6, 20/10, 25/15 and 30/20°C. Eighteen weeks of cold stratification were not sufficient for dormancy break in Q. nigra acorns. Cumulative germination percentages at 4 weeks of incubation were ≥77%, but only in incubation temperatures of 25/15 and 30/20°C. Dormancy break in Q. phellos acorns was achieved with 18 weeks of cold stratification, and cumulative germination percentages were ≥87% at 4 weeks of incubation in all test temperature regimes. Gibberellic acid solutions were not an effective substitute for cold stratification in either species. Phylogenetically, Q. nigra and Q. phellos are closely related species and, ecologically, both grow in the same habitat. Acorns of both species possess deep physiological dormancy (PD), but dormancy break and germination requirements differ in acorns of these two Quercus species.


2013 ◽  
Vol 146 (3) ◽  
pp. 290-294 ◽  
Author(s):  
Fernando A.O. Silveira ◽  
Rafaella C. Ribeiro ◽  
Sara Soares ◽  
Daniel Rocha ◽  
Caroline Oliveira

2020 ◽  
Vol 18 (3) ◽  
pp. 143-148
Author(s):  
C. Ayala ◽  
F. Fuentes ◽  
S. Contreras

AbstractIn Chile, two quinoa ecotypes are grown: salares, also present in the highlands of Bolivia, and coastal, in central and southern areas of the country, at sea level. Genotypes from the coastal ecotype have characteristics that differentiate them from the most popular quinoa genotypes grown in the Andean Region of South America. The objectives of this study were: (1) to determine the cardinal temperatures for seed germination in quinoa genotypes from coastal and salares ecotypes cultivated in Chile, and (2) to study the presence of physiological dormancy (PD) in these genotypes. Seed germination from nine quinoa genotypes, two from salares and seven from coastal ecotypes, was evaluated in a gradient of temperatures between 11 and 42°C. Germination was also evaluated at 20°C at 0, 7 and 15 months from harvest. Results showed that seed from the nine genotypes germinated at their maximum percentage between 11 and 35°C. However, their faster germination occurred between 25 and 35°C. There was a significant difference between optimum temperature for germination between genotypes from coastal (28°C) and salares (30°C). An increase in germination rates after 7 months of storage suggested the presence of a non-deep PD in seeds from coastal ecotype, which may be useful to improve pre-harvest sprouting resistance in quinoa breeding programmes.


2020 ◽  
Vol 35 (4) ◽  
pp. 322-331
Author(s):  
José M. Herranz Sanz ◽  
Miguel A. Copete Carreño ◽  
Raquel Herranz Ferrer ◽  
Alejandro Santiago González ◽  
Elena Copete Carreño ◽  
...  

2017 ◽  
Vol 27 (1) ◽  
pp. 50-60 ◽  
Author(s):  
Sara Mira ◽  
Alberto Arnal ◽  
Félix Pérez-García

AbstractThe broad aim of this work was to study intraspecific variation of seed germination in Phillyrea angustifolia L. (Oleaceae), a species with a hard (water-permeable) endocarp. Germination of seeds from six different wild populations was correlated with traits related either to seed morphology or to environmental parameters. Germination of naked seeds (seeds without endocarp) at the optimum germination conditions was similar among populations and individuals, but great differences could be detected regarding the germination of seeds with endocarp both at inter- and intra-populational levels. Differences among populations could be related to climatic parameters and to morphometric variables of seeds with endocarp. A higher germination was associated with populations growing in habitats with more severe summer (higher temperature, lower precipitation and a longer drought period) and producing elongated seeds (lower Feret ratio and roundness). Moreover, seeds from eight different individuals within a population were tested independently, and great differences regarding the germination of seeds with endocarp could be detected among individuals. Our results suggest that the morphological variation found in P. angustifolia endocarp is both under strong maternal genetic control as well as influenced by environmental factors, as indicated by the high variability among individuals within one population and the significant correlation between climate variables and seed germination among populations. Finally, it is emphasized that standardization of plant propagation protocols should take into account the degree of intraspecific variation of Mediterranean species.


2018 ◽  
Vol 66 (3) ◽  
pp. 218 ◽  
Author(s):  
Vidushi Thusithana ◽  
Sean M. Bellairs ◽  
Christine S. Bach

Seed germination traits of seasonal rainforest species differ from permanently moist evergreen rainforest species due to the prolonged seasonal drought. We investigated whether seed germination traits used to categorise evergreen rainforest species into pioneer and climax guilds were applicable to seasonal rainforest species. Seed dormancy, light requirements for germination and seed storage types of five climax and thirteen pioneer species of a coastal vine thicket were studied. Results were compared with published studies of evergreen rainforest species. Evergreen rainforest pioneer species are typically dormant, require light to germinate and tolerate desiccation, whereas climax species are typically non-dormant, tolerate shade during germination and are sensitive to desiccation. In seasonal rainforest we found that a high proportion of pioneer species had seeds that were non-dormant (62%), and a high proportion of pioneer species germinated equally well in light and dark conditions. In seasonal rainforest, we found that the majority of climax species had desiccation tolerant seeds, whereas in evergreen rainforest the proportion of climax species producing desiccation sensitive seeds is equal to or greater than the proportion of species with desiccation tolerant seeds. In seasonal rainforest species physical, physiological and epicotyl dormancy types were found. Generally, for seasonal rainforest species, the prevalent form of dormancy in pioneer species was physical dormancy whereas physiological dormancy was most common in evergreen rainforest pioneer species with dormancy. Our results suggest that the contrasting seed biology traits that typically apply to pioneer and climax species of evergreen rainforest species don’t typically apply to seasonal rainforest species.


Sign in / Sign up

Export Citation Format

Share Document