Genome-based identification and analysis of the genes involved in auxin biosynthesis and signal transduction during tea plant leaf development

2020 ◽  
Vol 261 ◽  
pp. 109030
Author(s):  
Yu Wang ◽  
Hao Liu ◽  
Hui Li ◽  
Ruimin Teng ◽  
Jing Zhuang
Planta ◽  
2017 ◽  
Vol 246 (6) ◽  
pp. 1139-1152 ◽  
Author(s):  
Fei Guo ◽  
Yafei Guo ◽  
Pu Wang ◽  
Yu Wang ◽  
Dejiang Ni

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shuwei Yu ◽  
Penghui Li ◽  
Xuecheng Zhao ◽  
Mangmang Tan ◽  
Muhammad Zulfiqar Ahmad ◽  
...  

AbstractThe growth of leaves and biosynthesis of characteristic secondary metabolites are critically important for tea production and quality control. However, little is known about the coordinated regulation of leaf development and catechin biosynthesis in tea plants. Here, we reported that TCP TFs are involved in both catechin biosynthesis and leaf development. An integrated analysis of catechin profiling and CsTCP expression in different tissues of plants under various environmental conditions at different developmental stages indicated significant correlations between the transcript levels of CIN-type TCPs and catechin production. CIN-type CsTCP3 and CsTCP4 and PCF-type CsTCP14 interacted with the MYB-bHLH-WD40 repeat (MBW) complex by forming a CsTCP3-CsTT8 heterodimer and modulating the transactivation activity of the promoters of anthocyanin synthase (CsANS1) and anthocyanidin reductase (CsANR1). Four types of microRNA/target modules, miR319b/CsTCP3-4, miR164b/CsCUC, miR396/CsGRF-GIF, and miR165b/HD-ZIPIII ones, were also identified and characterized for their functions in the regulation of the development of tea plant shoot tips and leaf shape. The results of these modules were reflected by their different expression patterns in developing buds and leaves that had distinctly different morphologies in three different tea plant varieties. Their roles in the regulation of catechin biosynthesis were also further verified by manipulation of microRNA319b (miR319b), which targets the transcripts of CsTCP3 and CsTCP4. Thus, CsTCPs represent at least one of these important groups of TFs that can integrate tea plant leaf development together with secondary metabolite biosynthesis. Our study provides new insight into shoot tip development and catechin production in tea plants and lays a foundation for further mechanistic understanding of the regulation of tea plant leaf development and secondary metabolism.


2020 ◽  
Author(s):  
Shunkai Hu ◽  
Mi Zhang ◽  
Yiqing Yang ◽  
Wei Xuan ◽  
Zhongwei Zou ◽  
...  

Abstract Abstract Background Tea plant (Camellia sinensis) is one of the most popular non-alcoholic beverage worldwide. Lateral roots (LRs) of tea plant are the main organ used for tea plant to absorb soil moisture and nutrients. Lateral roots formation and development are tightly regulated by the nitrogen and auxin signaling pathway. In order to understand the function of auxin and nitrogen signaling in LRs formation and development, transcriptome analysis was applied to investigate the differentially expressed genes involved in lateral roots of tea plants treated with indole-3-butyric acid (IBA), N-1-naphthylphthalamic acid (NPA), low and high nitrogen concentration. Results A total of 296 common differentially expressed genes were mainly identified and annotated to four signaling pathways, such as nitrogen metabolism, plant hormone signal transduction, Glutathione metabolism and transcription factors. RNA-sequencing results revealed that majority of differentially expressed genes play important roles in nitrogen metabolism and hormonal signal transduction. Low nitrogen condition induced the biosynthesis of auxin and accumulation of transcripts, thereby regulating lateral roots formation. Furthermore, metabolism of cytokinin and ethylene biosynthesis were also involved in lateral roots development. Transcription factors like MYB genes also contributed to the lateral roots formation of tea plants through secondary cell wall biosynthesis. Reversed phase ultra performance liquid chromatography (RP-UPLC) results showed that the auxin concentration in lateral roots was increased, while the nitrogen level decreased. Thus, tea plant lateral roots formation could be induced by low nitrogen concentration via auxin biosynthesis and accumulation. Conclusion This study provides new insights into the mechanisms associated with nitrogen and auxin signaling pathways to regulate LRs formation and arises new clues for the efficient utilization of nitrogen in tea plant at the genetic level.


2016 ◽  
Vol 177 (5) ◽  
pp. 419-431 ◽  
Author(s):  
Gaolathe Rantong ◽  
Katrien Van Der Kelen ◽  
Frank Van Breusegem ◽  
Arunika H. L. A. N. Gunawardena

2020 ◽  
Author(s):  
Shunkai Hu(Former Corresponding Author) ◽  
Mi Zhang ◽  
Yiqing Yang ◽  
Wei Xuan ◽  
Zhongwei Zou ◽  
...  

Abstract Background: Tea plant (Camellia sinensis) is one of the most popular non-alcoholic beverage worldwide. Lateral roots (LRs) of tea plant are the main organ used for tea plant to absorb soil moisture and nutrients. Lateral roots formation and development are tightly regulated by the nitrogen and auxin signaling pathway. In order to understand the function of auxin and nitrogen signaling in LRs formation and development, transcriptome analysis was applied to investigate the differentially expressed genes involved in lateral roots of tea plants treated with indole-3-butyric acid (IBA), N-1-naphthylphthalamic acid (NPA), low and high nitrogen concentration. Results: A total of 296 common differentially expressed genes were mainly identified and annotated to four signaling pathways, such as nitrogen metabolism, plant hormone signal transduction, Glutathione metabolism and transcription factors. RNA-sequencing results revealed that majority of differentially expressed genes play important roles in nitrogen metabolism and hormonal signal transduction. Low nitrogen condition induced the biosynthesis of auxin and accumulation of transcripts, thereby regulating lateral roots formation. Furthermore, metabolism of cytokinin and ethylene biosynthesis were also involved in lateral roots development. Transcription factors like MYB genes also contributed to the lateral roots formation of tea plants through secondary cell wall biosynthesis. Reversed phase ultra performance liquid chromatography (RP-UPLC) results showed that the auxin concentration in lateral roots was increased, while the nitrogen level decreased. Thus, tea plant lateral roots formation could be induced by low nitrogen concentration via auxin biosynthesis and accumulation. Conclusion: This study provides new insights into the mechanisms associated with nitrogen and auxin signaling pathways to regulate LRs formation and arises new clues for the efficient utilization of nitrogen in tea plant at the genetic level.


2020 ◽  
Author(s):  
Shunkai Hu ◽  
Mi Zhang ◽  
Yiqing Yang ◽  
Wei Xuan ◽  
Zhongwei Zou ◽  
...  

Abstract Background Tea plant (Camellia sinensis) is one of the most popular non-alcoholic beverage worldwide. Lateral roots (LRs) of tea plant are the main organ used for tea plant to absorb soil moisture and nutrients. Lateral roots formation and development are tightly regulated by the nitrogen and auxin signaling pathway. In order to understand the function of auxin and nitrogen signaling in LRs formation and development, transcriptome analysis was applied to investigate the differentially expressed genes involved in lateral roots of tea plants treated with indole-3-butyric acid (IBA), N-1-naphthylphthalamic acid (NPA), low and high nitrogen concentration. Results A total of 296 common differentially expressed genes were mainly identified and annotated to four signaling pathways, such as nitrogen metabolism, plant hormone signal transduction, Glutathione metabolism and transcription factors. RNA-sequencing results revealed that majority of differentially expressed genes play important roles in nitrogen metabolism and hormonal signal transduction. Low nitrogen condition induced the biosynthesis of auxin and accumulation of transcripts, thereby regulating lateral roots formation. Furthermore, metabolism of cytokinin and ethylene biosynthesis were also involved in lateral roots development. Transcription factors like MYB genes also contributed to the lateral roots formation of tea plants through secondary cell wall biosynthesis. Reversed phase ultra performance liquid chromatography (RP-UPLC) results showed that the auxin concentration in lateral roots was increased, while the nitrogen level decreased. Thus, tea plant lateral roots formation could be induced by low nitrogen concentration via auxin biosynthesis and accumulation. Conclusion This study provides new insights into the mechanisms associated with nitrogen and auxin signaling pathways to regulate LRs formation and arises new clues for the efficient utilization of nitrogen in tea plant at the genetic level.


Author(s):  
Nathan M Rowarth ◽  
Adrian N Dauphinee ◽  
Georgia L Denbigh ◽  
Arunika Hlan Gunawardena

Abstract Lace plant leaves utilize programmed cell death (PCD) to form perforations during development. The role of heat shock proteins (Hsps) in PCD during lace plant leaf development is currently unknown. Hsp70 amounts were measured throughout lace plant leaf development, and the results indicate that it is highest before and during PCD. Increased Hsp70 amounts correlate with raised anthocyanin content and caspase-like protease (CLP) activity. To investigate the effects of Hsp70 on leaf development, whole plants were treated with either of the known regulators of PCD [reactive oxygen species (ROS) or antioxidants] or an Hsp70 inhibitor, chlorophenylethynylsulfonamide (PES-Cl). ROS treatment significantly increased Hsp70 2-fold and CLP activity in early developing leaves, but no change in anthocyanin and the number of perforations formed was observed. Antioxidant treatment significantly decreased Hsp70, anthocyanin, and CLP activity in early leaves, resulting in the fewest perforations. PES-Cl (25 μM) treatment significantly increased Hsp70 4-fold in early leaves, while anthocyanin, superoxide, and CLP activity significantly declined, leading to fewer perforations. Results show that significantly increased (4-fold) or decreased Hsp70 amounts lead to lower anthocyanin and CLP activity, inhibiting PCD induction. Our data support the hypothesis that Hsp70 plays a role in regulating PCD at a threshold in lace plant leaf development. Hsp70 affects anthocyanin content and caspase-like protease activity, and helps regulate PCD during the remodelling of leaves of lace plant, Aponogeton madagascariensis.


Sign in / Sign up

Export Citation Format

Share Document