Heterologous overexpression of strawberry bZIP11 induces sugar accumulation and inhibits plant growth of tomato

2022 ◽  
Vol 292 ◽  
pp. 110634
Author(s):  
Yunting Zhang ◽  
Shanlin Li ◽  
Yan Chen ◽  
Yongqiang Liu ◽  
Yuanxiu Lin ◽  
...  
Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 136 ◽  
Author(s):  
Nguyen ◽  
Dang ◽  
Nguyen ◽  
Tran ◽  
Giang ◽  
...  

The use of plant growth regulators is one effective solution to improve sugarcane yields and sugar content in several countries. In this study, we examined the role of gibberellin acid (GA3) and glyphosate (Gly) plant growth regulators to determine the appropriate concentration of GA3 and Gly to increase the yield of sugarcane and sugar accumulation, respectively. The statistical results showed that GA3 was sprayed at 150 ppm to increment the actual yield by 19.94%; sucrose accumulation increased by 2.21%. With Gly treatment, although the yield decreased by 3.17%, sucrose accumulation increased by 11.27% compared to control trials. In this study, the combined concentration of 150 ppm of both GA3 and Gly gave the best results, for which sucrose accumulation increased from 2.21% to 10.74% and from 19.94% to 20.97% for actual yield. The results led to increased net income compared to the control. To address concerns about residues of plant growth regulators, residues of GA3 and Gly were evaluated after the sugarcane harvest using the HPLC and UV-vis methods, respectively. The analyzed results showed that their residues were lower than what is permitted in several countries. This showed the applicability of the study, on a large scale, to increase sucrose accumulation, productivity of sugarcane, and profit for farmers.


2022 ◽  
Vol 12 ◽  
Author(s):  
Arif Rashid ◽  
Haixiang Ruan ◽  
Yunsheng Wang

Sugar is an important carbon source and contributes significantly to the improvement of plant growth and fruit flavor quality. Sugar transport through the tonoplast is important for intracellular homeostasis and metabolic balance in plant cells. There are four tonoplast sugar transporters (FvTST1-4) in strawberry genome. The qRT-PCR results indicated that FvTST1 has a differential expression pattern in different tissues and developmental stages, and exhibited highest expression level in mature fruits. The yeast complementation assay showed that FvTST1 can mediate the uptake of different sugars, such as fructose, glucose, sucrose, and mannose. Subcellular localization analyses revealed that FvTST1 was mainly targeted to the tonoplast. Transient expression of FvTST1 in strawberry fruits enhanced both fruit ripening and sugar accumulation. Furthermore, FvTST1-transformed tomato plants exhibited higher sucrose and auxin content, enhanced seed germination and vegetative growth, higher photosynthetic rate, early flowering, and bore fruit; fructose and glucose levels were higher in transgenic fruits than those in the control. Transcriptomic analysis indicated that the auxin signaling pathway was highly enriched pathway in up-regulated Gene-ontology terms. In transgenic plants, genes encoding transcription factors, such as phytochrome-interacting factors PIF1, -3, and -4, as well as their potential target genes, were also induced. Collectively, the results show that FvTST1 enhances plant growth and fruit ripening by modulating endogenous sugars, and highlight the biological significance of this gene for future breeding purposes.


2015 ◽  
Vol 58 ◽  
pp. 61-70 ◽  
Author(s):  
Paul B. Larsen

Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.


1993 ◽  
Vol 89 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Jeff S. Kuehny ◽  
Mary C. Halbrooks

1994 ◽  
Vol 90 (4) ◽  
pp. 739-747 ◽  
Author(s):  
Diana Lee ◽  
Barbara A. Moffatt

Sign in / Sign up

Export Citation Format

Share Document