Key gene links auxin and cytoskeleton to control plant growth

Author(s):  
Sedeer El-Shawk
Keyword(s):  
2001 ◽  
Vol 47 (10) ◽  
pp. 916-924 ◽  
Author(s):  
Tika B Adhikari ◽  
C M Joseph ◽  
Guoping Yang ◽  
Donald A Phillips ◽  
Louise M Nelson

Of 102 rhizoplane and endophytic bacteria isolated from rice roots and stems in California, 37% significantly (P [Formula: see text] 0.05) inhibited the growth in vitro of two pathogens, Achlya klebsiana and Pythium spinosum, causing seedling disease of rice. Four endophytic strains were highly effective against seedling disease in growth pouch assays, and these were identified as Pseudomonas fluorescens (S3), Pseudomonas tolaasii (S20), Pseudomonas veronii (S21), and Sphingomonas trueperi (S12) by sequencing of amplified 16S rRNA genes. Strains S12, S20, and S21 contained the nitrogen fixation gene, nifD, but only S12 was able to reduce acetylene in pure culture. The four strains significantly enhanced plant growth in the absence of pathogens, as evidenced by increases in plant height and dry weight of inoculated rice seedlings relative to noninoculated rice. Three bacterial strains (S3, S20, and S21) were evaluated in pot bioassays and reduced disease incidence by 50%–73%. Strain S3 was as effective at suppressing disease at the lowest inoculum density (106 CFU/mL) as at higher density (108 CFU/mL or undiluted suspension). This study indicates that selected endophytic bacterial strains have potential for control of seedling disease of rice and for plant growth promotion.Key words: biological control, plant growth promotion, endophytes, rice, seedling disease.


Cell Research ◽  
2012 ◽  
Vol 22 (12) ◽  
pp. 1650-1665 ◽  
Author(s):  
Ren-Jie Tang ◽  
Hua Liu ◽  
Yang Yang ◽  
Lei Yang ◽  
Xiao-Shu Gao ◽  
...  

2005 ◽  
Vol 82 (3) ◽  
pp. 85-102 ◽  
Author(s):  
C.L. Doumbou ◽  
M.K. Hamby Salove ◽  
D.L. Crawford ◽  
C. Beaulieu

Actinomycetes represent a high proportion of the soil microbial biomass and have the capacity to produce a wide variety of antibiotics and of extracellular enzymes. Several strains of actinomycetes have been found to protect plants against plant diseases. This review focuses on the potential of actinomycetes as (a) source of agroactive compounds, (b) plant growth promoting organisms, and (c) biocontrol tools of plant diseases. This review also addresses examples of biological control of fungal and bacterial plant pathogens by actinomycetes species which have already reached the market or are likely to be exploited commercially within the next few years.


2018 ◽  
Vol 11 (7) ◽  
pp. 928-942 ◽  
Author(s):  
Junling Huai ◽  
Xinyu Zhang ◽  
Jialong Li ◽  
Tingting Ma ◽  
Ping Zha ◽  
...  

1996 ◽  
Vol 1 (12) ◽  
pp. 411 ◽  
Author(s):  
Edvins Miklashevichs ◽  
Inge Czaja ◽  
Horst Röhrig ◽  
Jürgen Schmidt ◽  
Michael John ◽  
...  

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wen Qing Yu ◽  
Peng Li ◽  
Feng Chao Yan ◽  
Gui Ping Zheng ◽  
Wen Zhi Liu ◽  
...  

AbstractProtein elicitors can induce plant systemic resistance to pathogens. In an earlier study, we cloned an EsxA gene from the plant growth-promoting rhizobacterium Paenibacillus terrae NK3-4 and expressed it in Pichia pastoris. In addition to being important for the pathogenicity of animal pathogens, EsxA can also induce an immune response in animals. While, we found the exogenously expressed EsxA has the activity of elicitor, which can trigger hypersensitive response and reactive oxygen species burst in leaves as well as enhanced rice plant growth. The effects of EsxA on seedling blight (Fusarium oxysporum) resistance and gene transcription, including pathogenesis-related (PR) genes in rice were evaluated. The germination rate was 95.0% for seeds treated with EsxA and then inoculated with F. oxysporum, which was 2.8-times higher than that of F. oxysporum-infected control seeds that were not treated with EsxA (Con). The buds and roots of EsxA-treated seedlings were 2.4- and 15.9-times longer than those of Con seedlings. The plants and roots of seedlings dipped in an EsxA solution and then inoculated with F. oxysporum were longer than those of the Con seedlings. Theplant length, number of total roots, and number of white roots were respectively 23.2%, 1.74-times, and 7.42-times greater for the seedlings sprayed with EsxA and then inoculated with F. oxysporum than for the Con seedlings. The EsxA induction efficiency (spray treatment) on seedling blight resistance was 60.9%. The transcriptome analysis revealed 1137 and 239 rice genes with EsxA-induced up-regulated and down-regulated transcription levels, respectively. At 48 h after the EsxA treatment, the transcription of 611 and 160 genes was up-regulated and down-regulated, respectively, compared with the transcription levels for the untreated control at the same time-point. Many disease resistance-related PR genes had up-regulated transcription levels. The qPCR data were consistent with the transcriptome sequencing results. EsxA triggered rice ISR to seedling blight and gene differential transcription, including the up-regulated transcription of rice PR genes. These findings may be relevant for the use of EsxA as a protein elicitor to control plant diseases.


1988 ◽  
Vol 6 (3) ◽  
pp. 101-104
Author(s):  
Julie A. Jacobson ◽  
James E. Klett

Six different preemergence herbicides including one herbicide combination were applied to container-grown Dianthus barbatus L. (Sweet William) and evaluated for their effects on weed control, plant growth and phytotoxicity. Napropamide (Devrinol 10G), oryzalin (Surflan 40.4% AS), oxyfluorfen + oryzalin (Rout GS-3G), oxadiazon (Ronstar 2G), metolachlor (Dual 8EC), simazine (Princep 4G) and Dual and Princep were applied to container-grown Sweet William and studied for a growing season. Weed seeds sown were yellow foxtail, annual bluegrass, common groundsel, common chickweed, and creeping woodsorrel. Devrinol, Surflan, and Rout GS resulted in the best weed control without affecting the overall growth of Sweet Wiliam or resulting in any phytotoxicity at rates applied. Dual and Princep resulted in phytotoxicity at all rates applied on Sweet William to a degree that would make the plants unsalable.


HortScience ◽  
2014 ◽  
Vol 49 (6) ◽  
pp. 819-826 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

With the increasing popularity of green roofs, efficient green roof plant production is required to adequately supply the industry. Applying fertilizer at an appropriate rate can provide sufficient plant nutrition for efficient plant growth without excess nutrient leaching into the environment. This study compared rates of controlled-release fertilizer (CRF) applied to green roof modules at the plant production stage to determine an optimum CRF rate for encouraging plant growth and vegetative coverage while minimizing the amount and concentration of leached nutrients. After sedum cuttings were rooted in green roof modules on 29 Aug. 2011, CRF was applied at 5, 10, 15, 20, 25, 30, and 35 g·m−2 nitrogen (N) and modules were compared with an unfertilized control. Plant growth, vegetative coverage, and overall appearance requirements were met after fertilization at 20 g·m−2 N. Modules fertilized at less than 20 g·m−2 N did not reach the target proportion coverage during the study. When fertilized at 20 g·m−2 N, green roof modules reached the target proportion coverage after 240 days of growth. Differences in leachate volumes were observed among treatments 35 days after fertilization and fertilization at 20 g·m−2 N minimized leaching of most nutrients. Therefore, with the green roof module system used in this study, an application of 20 g·m−2 N for green roof module or sedum cutting production is an optimum CRF rate for plant growth and vegetative coverage while minimizing negative environmental impacts.


2020 ◽  
pp. 117-120
Author(s):  
. Anolisa ◽  
Md. Al-Imran, Riyad Hossen ◽  
A.T.M. Rafiqul Islam ◽  
Subroto Kumar Das

Chili (Capsicum annuum L.) is an important food additive with high medicinal value. To investigate the effect of plant growth regulators on chili, seedlings of chili were collected from the local market and grown in the experimental field of the University of Barishal, Bangladesh. Foliar spray of different degrees of plant growth regulators, Gibberellin (50 mg/l, 100 mg/l, 250mg/l, 350 mg/l GA3) and Cytokinin (50 mg/l, 100 mg/l, 250mg/l, 350mg/l Kn) were applied from 15 days of germination. Data on different growth and yield parameters were collected and analyzed statistically. The result reveals that there is a significant difference in growth and yield related traits in chili due to the application of plant growth regulators. An optimum level of PGRs application shows better performance compare with control. Plant height particularly influenced by GA3 whereas other attributes like the number of leaves, branches, flowers and fruits are greatly influenced by the application of kinetin.


Sign in / Sign up

Export Citation Format

Share Document