Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine

2005 ◽  
Vol 338 (1-2) ◽  
pp. 53-66 ◽  
Author(s):  
Kevin B. Hallberg ◽  
D. Barrie Johnson
2012 ◽  
Vol 599 ◽  
pp. 434-440 ◽  
Author(s):  
Chun Qin Yin ◽  
Qing Bin Sun ◽  
Xue Qiang Zhao

The occurrence and distribution of heavy metals (including copper (Cu), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr), cobalt (Co), nickel (Ni) and manganese (Mn)) in paddy soils from the Daye mining area were investigated by atomic absorption spectrophotometry (AAS) using the flame and graphite furnace method. The pollution of all metals investigated was found in paddy soil samples from the Daye mining area. Additionally, Cu, Pb, Zn and Cd concentrations at the sampling sites near the quarries and mines located in the central and eastern part of Daye were higher than those at the other sampling sites. Hierarchical cluster analysis and principal component analysis (PCA) of the heavy metal concentrations showed that the mine might be an important contributor to heavy metals contamination. PCA analysis extracted two factors that explained 67% of the total variables. The source of Zn, Cd, Cu and Pb would be primarily the deposition of aerosol particles emitted by metal smelting, manufacturing and traffic, acid mine drainage and metal mine waste rock and long-term stockpiling of tailings. Ni and Cr were controlled by parent material in the soils. Evaluation of heavy metals contamination of paddy soils indicated that the Cd contamination was the most widespread, followed Cu, Ni, Zn and Pb.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Tebogo M. Mokgehle ◽  
Nikita T. Tavengwa

AbstractAcid mine drainage is the reaction of surface water with sub-surface water located on sulfur bearing rocks, resulting in sulfuric acid. These highly acidic conditions result in leaching of non-biodegradeable heavy metals from rock which then accumulate in flora, posing a significant environmental hazard. Hence, reliable, cost effective remediation techniques are continuously sought after by researchers. A range of materials were examined as adsorbents in the extraction of heavy metal ions from acid mine drainage (AMD). However, these materials generally have moderate to poor adsorption capacities. To address this problem, researchers have recently turned to nano-sized materials to enhance the surface area of the adsorbent when in contact with the heavy metal solution. Lately, there have been developments in studying the surface chemistry of nano-engineered materials during adsorption, which involved alterations in the physical and chemical make-up of nanomaterials. The resultant surface engineered nanomaterials have been proven to show rapid adsorption rates and remarkable adsorption capacities for removal of a wide range of heavy metal contaminants in AMD compared to the unmodified nanomaterials. A brief overview of zeolites as adsorbents and the developent of nanosorbents to modernly applied magnetic sorbents and ion imprinted polymers will be discussed. This work provides researchers with thorough insight into the adsorption mechanism and performance of nanosorbents, and finds common ground between the past, present and future of these versatile materials.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 596 ◽  
Author(s):  
Yongwei Song ◽  
Heru Wang ◽  
Jun Yang ◽  
Yanxiao Cao

Acid mine drainage is highly acidic and contains large quantities of Fe and heavy metal elements. Thus, it is important to promote the transformation of Fe into secondary iron minerals that exhibit strong heavy-metal removal abilities. Using simulated acid mine drainage, this work analyzes the influence of monovalent cations (K+, NH4+, and Na+) on the Fe2+ oxidation and total Fe deposition efficiencies, as well as the phases of secondary iron minerals in an Acidithiobacillus ferrooxidans system. It also compares the Cr(VI) (K2Cr2O7) and As(III) (As2O3) removal efficiencies of different schwertmannites. The results indicated that high concentrations of monovalent cations (NH4+ ≥ 320 mmol/L, and Na+ ≥ 1600 mmol/L) inhibited the biological oxidation of Fe2+. Moreover, the mineralizing abilities of the three cations differed (K+ > NH4+ > Na+), with cumulative Fe deposition efficiencies of 58.7%, 28.1%, and 18.6%, respectively [n(M) = 53.3 mmol/L, cultivation time = 96 h]. Additionally, at initial Cr(VI) and As(III) concentrations of 10 and 1 mg/L, respectively, the Cr(VI) and As(III) removal efficiencies exhibited by schwertmannites acquired by the three mineralization systems differed [n(Na) = 53.3 > n(NH4) = 53.3 > n(K) = 0.8 mmol/L]. Overall, the analytical results suggested that the removal efficiency of toxic elements was mainly influenced by the apparent structure, particle size, and specific surface area of schwertmannite.


2010 ◽  
Vol 82 (1) ◽  
pp. 146-153 ◽  
Author(s):  
XU Xiaochun ◽  
XIE Qiaoqin ◽  
CHEN Fang ◽  
WANG Jun ◽  
WU Wentao

2001 ◽  
Vol 42 (9) ◽  
pp. 1877-1884
Author(s):  
Keiko Sasaki ◽  
Tagiru Ogino ◽  
Yuji Endo ◽  
Kunihiko Kurosawa

2009 ◽  
Vol 62 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Danielle Andrade Pimentel ◽  
José Aurélio Medeiros da Luz

Acid mine drainage is a main environmental problem linked to coal and sulfide ore mining. Its treatment usually involves alkalinization and subsequent precipitation and immobilization of the dissolved species. Rainfalls over stockpiles can cause a very similar phenomenon. This work aimed to study the effluents from such a leaching process in steam-coal stockpiles Brazilian coal with a high pyrite content was used. The effluents have been chemically characterized. Effluent clarification by aggregation and settling in an attempt to simultaneously deplete heavy metal content was studied. Settling experiments were carried out with coal suspensions, in order to evaluate the efficiency of inorganic and polymeric reagents in the process.


Sign in / Sign up

Export Citation Format

Share Document