Estimating the toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) using in situ pore water concentrations in different soils

2012 ◽  
Vol 438 ◽  
pp. 26-32 ◽  
Author(s):  
Kailin Liu ◽  
Xiong Pan ◽  
Yuling Han ◽  
Feifan Tang ◽  
Yunlong Yu
2012 ◽  
Vol 193-194 ◽  
pp. 1010-1013
Author(s):  
Shu Qing Zhao

The construct to precast pile in thick clayey soil can cause the accumulation of excess pore water pressure. The high excess pore pressure can make soil, buildings and pipes surrounded have large deflection, even make them injured. Combining with actual projects, this paper presents an in-situ model test on the changes of excess pore water pressure caused by precast pile construct. It is found that the radius of influence range for single pile driven is about 15m,the excess pore water pressure can reach or even exceed the above effective soil pressure, and there are two relatively stable stages.


2018 ◽  
Vol 337 ◽  
pp. 210-219 ◽  
Author(s):  
Xianqiang Tang ◽  
Qingyun Li ◽  
Zhenhua Wang ◽  
Yanping Hu ◽  
Yuan Hu ◽  
...  

2019 ◽  
Author(s):  
Anna Plass ◽  
Christian Schlosser ◽  
Stefan Sommer ◽  
Andrew W. Dale ◽  
Eric P. Achterberg ◽  
...  

Abstract. Sediments in oxygen-depleted marine environments can be an important sink or source of bio-essential trace metals in the ocean. However, the key mechanisms controlling the release from or burial of trace metals in sediments are not exactly understood. Here, we investigate the benthic biogeochemical cycling of Fe and Cd in the oxygen minimum zone off Peru. We combine bottom water profiles, pore water profiles, as well as benthic fluxes determined from pore water profiles and in-situ from benthic chamber incubations along a depth transect at 12° S. In agreement with previous studies, both concentration-depth profiles and in-situ benthic fluxes indicate a Fe release from sediments into bottom waters. Diffusive Fe fluxes and Fe fluxes from benthic chamber incubations are roughly consistent (0.3–17.1 mmol m−2 y−1), indicating that diffusion is the main transport mechanism of dissolved Fe across the sediment-water interface. The occurrence of mats of sulfur oxidizing bacteria on the seafloor represents an important control on the spatial distribution of Fe fluxes by regulating hydrogen sulfide (H2S) concentrations and, potentially, Fe sulfide precipitation within the surface sediment. Removal of dissolved Fe after its release to anoxic bottom waters is rapid in the first 4 m away from the seafloor (half-life


2021 ◽  
Author(s):  
Vito Tagarelli ◽  
Federica Cotecchia ◽  
Osvaldo Bottiglieri

<p>The soil-vegetation-atmosphere interaction is becoming more and more the subject of intense scientific research, motivated by the wish of using smart vegetation implants as sustainable mitigation measure for erosive phenomena and slope instability processes. <br>The use of novel naturalistic interventions making use of vegetation has been already proven to be successful in the reduction of erosion along sloping grounds, or in increasing the stability of the shallow covers of slopes, whereas the success of vegetation as slope stabilization measure still needs to be scientifically proven for slopes location of deep landslides, whose current activity is climate-induced, as frequent in the south-eastern Apennines. Recently, though, peculiar natural perennial grass species, which develop deep root systems, have been found to grow in the semi-arid climate characterizing the south-eastern Apennines and to determine a strong transpirative flow. Therefore, their peculiar leaf architecture, their crop density, combined with their perennial status and transpiration capacity, make such grass species suitable for the reduction of the net infiltration rates, equal to the difference between the rainfall rate and the sum of the runoff plus the evapotranspiration rate. As such, the grass species here of reference have been selected as vegetation measure intended to determine a reduction of the piezometric levels in the slope down to large depths, in order to increase the stability of deep landslide bodies. <br>At this stage, only preliminary field data representing the interaction of clayey soils with the above cited vegetation species are available. These have been logged within a full scale in-situ test site, where the deep-rooted crop spices have been seeded and farmed. The test site (approximatively 2000 m<sup>2</sup>) has been set up in the toe area of the climate-induced Pisciolo landslide, in the eastern sector of the Southern Apennines.<br>The impact of the vegetation on the hydro-mechanical state of the soil is examined in terms of the spatial and temporal variation of the soil water content, suction an pore water pressure from ground level down to depth, both within the vegetated test site and outside it, where only spare wild vegetation occur, in order to assess the effects of the implant of the selected vegetation. The soil water contents, suctions and pore water pressures have been also analyzed taking into account of the climatic actions, monitored by means of a meteorological station. </p>


Sign in / Sign up

Export Citation Format

Share Document