Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques

2016 ◽  
Vol 562 ◽  
pp. 228-236 ◽  
Author(s):  
Fi-John Chang ◽  
Pin-An Chen ◽  
Li-Chiu Chang ◽  
Yu-Hsuan Tsai
1927 ◽  
Vol 10 (4) ◽  
pp. 599-615 ◽  
Author(s):  
Charles J. Lyon

The active component of phosphate solutions, in relation to promoter action on oxidising enzymes, is the PO4''' ion. This is shown by the demonstration of a hyperbolic relationship between per cent production of CO2 (of Elodea) and pPO4, the measure of the phosphate ion potential. This is consistent with the rate of respiration as affected by changing pPO4 through change of total phosphate concentration while pH is kept constant. The equation for this relationship is (CO2 – a) (pPO4 – b)n = K where a, b, n, and K are constants and n = 1. The same relationship to phosphate ion concentration, expressed by the equation (Activity of enzyme) (pPO4)n = K, where n and K are constants and n varies from 1 to 6 under different conditions, appears to hold for some other enzyme actions, including those of peroxidase and pancreatic lipase.


2020 ◽  
Vol 637 ◽  
pp. 117-140 ◽  
Author(s):  
DW McGowan ◽  
ED Goldstein ◽  
ML Arimitsu ◽  
AL Deary ◽  
O Ormseth ◽  
...  

Pacific capelin Mallotus catervarius are planktivorous small pelagic fish that serve an intermediate trophic role in marine food webs. Due to the lack of a directed fishery or monitoring of capelin in the Northeast Pacific, limited information is available on their distribution and abundance, and how spatio-temporal fluctuations in capelin density affect their availability as prey. To provide information on life history, spatial patterns, and population dynamics of capelin in the Gulf of Alaska (GOA), we modeled distributions of spawning habitat and larval dispersal, and synthesized spatially indexed data from multiple independent sources from 1996 to 2016. Potential capelin spawning areas were broadly distributed across the GOA. Models of larval drift show the GOA’s advective circulation patterns disperse capelin larvae over the continental shelf and upper slope, indicating potential connections between spawning areas and observed offshore distributions that are influenced by the location and timing of spawning. Spatial overlap in composite distributions of larval and age-1+ fish was used to identify core areas where capelin consistently occur and concentrate. Capelin primarily occupy shelf waters near the Kodiak Archipelago, and are patchily distributed across the GOA shelf and inshore waters. Interannual variations in abundance along with spatio-temporal differences in density indicate that the availability of capelin to predators and monitoring surveys is highly variable in the GOA. We demonstrate that the limitations of individual data series can be compensated for by integrating multiple data sources to monitor fluctuations in distributions and abundance trends of an ecologically important species across a large marine ecosystem.


2015 ◽  
Vol 81 (5-8) ◽  
pp. 771-778 ◽  
Author(s):  
Pascual Noradino Montes Dorantes ◽  
Marco Aurelio Jiménez Gómez ◽  
Gerardo Maximiliano Méndez ◽  
Juan Pablo Nieto González ◽  
Jesús de la Rosa Elizondo

Sign in / Sign up

Export Citation Format

Share Document