Phytolith-occluded organic carbon as a mechanism for long-term carbon sequestration in a typical steppe: The predominant role of belowground productivity

2017 ◽  
Vol 577 ◽  
pp. 413-417 ◽  
Author(s):  
Limin Qi ◽  
Frank Yonghong Li ◽  
Zhangting Huang ◽  
Peikun Jiang ◽  
Taogetao Baoyin ◽  
...  

2012 ◽  
Vol 12 ◽  
pp. 127-132
Author(s):  
Bhanu B Panthi

This research attempts to identify the existing condition of the community managed forest based on the assumption that it will serve as a proxy for the condition of other forests in the mid hills region of Nepal. The research area has an atypical variation in altitude and diverse pattern of vegetation. This study mainly focuses on estimating carbon content in the forest and identifying the species that has more carbon storage capacity. The research signifies the role of forests in mitigation of ‘Global warming’ and ‘Climate change’ by storing carbon in tree biomass. These types of community based forest management programs are significant for their additional carbon sequestration through the avoidance of deforestation and degradation. The carbon sequestration have a significant contribution to environmental benefits, any shrinkage of forests have an enormous impact on CO2 emission with long term consequences. Thus, the development and expansion of community managed forests provide many benefits to the adjacent community and globally at large.DOI: http://dx.doi.org/10.3126/njst.v12i0.6490 Nepal Journal of Science and Technology 12 (2011) 127-32 



Geoderma ◽  
2019 ◽  
Vol 355 ◽  
pp. 113880 ◽  
Author(s):  
Xiaolei Huang ◽  
Zhixin Jia ◽  
Junjie Guo ◽  
Tingliang Li ◽  
Dasheng Sun ◽  
...  


2006 ◽  
Vol 22 (4) ◽  
pp. 334-341 ◽  
Author(s):  
C. W. Watts ◽  
L. J. Clark ◽  
P. R. Poulton ◽  
D. S. Powlson ◽  
A. P. Whitmore


2020 ◽  
Author(s):  
Craig Smeaton ◽  
William Austin

<p>Fjords are recognized as globally significant hotspots for the burial (Smith et al., 2015) and long-term storage (Smeaton et al., 2017) of marine and terrestrially derived organic carbon (OC). By trapping and locking away OC over geological timescales, fjord sediments provide a potentially important yet largely overlooked climate regulation service. The proximity of fjords to the terrestrial environment in combination with their geomorphology and hydrography results in the fjordic sediments being subsidized with organic carbon (OC) from the terrestrial environment. This terrestrial OC (OC<sub>terr</sub>) transferred to the marine environment has traditionally be considered lost to the atmosphere in the form of CO<sub>2</sub> in most carbon (C) accounting schemes yet globally it is estimated that 55% of OC trapped in fjord sediments is derived from terrestrial sources (Cui et al., 2016). So is this terrestrial OC truly lost? Here, we estimate the quantity of OC<sub>terr</sub> held within North Atlantic fjords with the aim of better understanding the recent and long-term role of the terrestrial environment in the evolution of these globally significant sedimentary OC stores. By understanding this subsidy of OC from the terrestrial to the marine environment we can take the first steps in quantifying the terrestrial OC stored in fjords and the wider coastal marine environment.</p><p>Cui, X., Bianchi, T.S., Savage, C. and Smith, R.W., 2016. Organic carbon burial in fjords: Terrestrial versus marine inputs. <em>Earth and Planetary Science Letters</em>, <em>451</em>, pp.41-50.</p><p>Smeaton, C., Austin, W.E., Davies, A., Baltzer, A., Howe, J.A. and Baxter, J.M., 2017. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary stocks. <em>Biogeosciences</em>.</p><p>Smith, R.W., Bianchi, T.S., Allison, M., Savage, C. and Galy, V., 2015. High rates of organic carbon burial in fjord sediments globally. <em>Nature Geoscience</em>, <em>8</em>(6), p.450.</p><p> </p>



Author(s):  
Ravi Kumar Meena ◽  
Anil Kumar Verma ◽  
Chiranjeev Kumawat ◽  
Brijesh Yadav ◽  
Atul B. Pawar ◽  
...  


2019 ◽  
Author(s):  
Chuan Chee Hoe ◽  
John Barry Gallagher ◽  
Chew Swee Theng ◽  
Norlaila Binti Mohd. Zanuri

AbstractDetermination of blue carbon sequestration in seagrass sediments over climatic time scales relies on several assumptions, such as no loss of particulate organic carbon (POC) after one or two years, tight coupling between POC loss and CO2emissions, no dissolution of carbonates and removal of the stable black carbon (BC) contribution. We tested these assumptions via 500-day anoxic decomposition/mineralisation experiments to capture centennial parameter decay dynamics from two sediment horizons robustly dated as 2 and 18 years old. No loss of BC was detected, and decay of POC was best described for both horizons by near-identical reactivity continuum models. The models predicted average losses of 49% and 51% after 100 years of burial and 20–22 cm horizons, respectively. However, the loss rate of POC was far greater than the release rate of CO2, both before and after accounting for CO2from anoxic particulate inorganic carbon (PIC) production, possibly as siderite. The deficit could not be attributed to dissolved organic carbon or dark CO2fixation. Instead, evidence based on δ13CO2, acidity and lack of sulphate reduction suggested methanogenesis. The results indicate the importance of centennial losses of POC and PIC precipitation and possibly methanogenesis in estimating carbon sequestration rates.



Sign in / Sign up

Export Citation Format

Share Document