Are land use and short time climate change effective on soil carbon compositions and their relationships with soil properties in alpine grassland ecosystems on Qinghai-Tibetan Plateau?

2018 ◽  
Vol 625 ◽  
pp. 539-546 ◽  
Author(s):  
Zhenzhen Zhao ◽  
Shikui Dong ◽  
Xiaoman Jiang ◽  
Jinbo Zhao ◽  
Shiliang Liu ◽  
...  
Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


2021 ◽  
Author(s):  
Yuehong Shi ◽  
Xiaolu Tang ◽  
Peng Yu ◽  
Li Xu ◽  
Guo Chen ◽  
...  

<p>Soil carbon turnover time (τ, year) is an important indicator of soil carbon stability, and a major factor in determining soil carbon sequestration capacity. Many studies investigated τ in the topsoil or the first meter underground, however, little is known about subsoil τ (0.2 – 1.0 m) and its environmental drivers, while world subsoils below 0.2 m accounts for the majority of total soil organic carbon (SOC) stock and may be as sensitive as that of the topsoil to climate change. We used the observations from the published literatures to estimate subsoil τ (the ratio of SOC stock to net primary productivity) in grasslands across China and employed regression analysis to detect the environmental controls on subsoil τ. Finally, structural equation modelling (SEM) was applied to identify the dominant environmental driver (including climate, vegetation and soil). Results showed that subsoil τ varied greatly from 5.52 to 702.17 years, and the mean (± standard deviation) subsoil τ was 118.5 ± 97.8 years. Subsoil τ varied significantly among different grassland types that it was 164.0 ± 112.0 years for alpine meadow, 107.0 ± 47.9 years for alpine steppe, 177.0 ± 143.0 years for temperate desert steppe, 96.6 ± 88.7 years for temperate meadow steppe, 101.0 ± 75.9 years for temperate typical steppe. Subsoil τ significantly and negatively correlated (p < 0.05) with vegetation index, leaf area index and gross primary production, highlighting the importance of vegetation on τ. Mean annual temperature (MAT) and precipitation (MAP) had a negative impact on subsoil τ, indicating a faster turnover of soil carbon with the increasing of MAT or MAP under ongoing climate change. SEM showed that soil properties, such as soil bulk density, cation exchange capacity and soil silt, were the most important variables driving subsoil τ, challenging our current understanding of climatic drivers (MAT and MAP) controlling on topsoil τ, further providing new evidence that different mechanisms control topsoil and subsoil τ. These conclusions demonstrated that different environmental controls should be considered for reliable prediction of soil carbon dynamics in the top and subsoils in biogeochemical models or earth system models at regional or global scales.</p>


2021 ◽  
Author(s):  
David Bysouth ◽  
Merritt Turetsky ◽  
Andrew Spring

<p>Climate change is causing rapid warming at northern high latitudes and disproportionately affecting ecosystem services that northern communities rely upon. In Canada’s Northwest Territories (NWT), climate change is impacting the access and availability of traditional foods that are critical for community health and well-being. With climate change potentially expanding the envelope of suitable agricultural land northward, many communities in the NWT are evaluating including agriculture in their food systems. However, the conversion of boreal forest to agriculture may degrade the carbon rich soils that characterize the region, resulting in large carbon losses to the atmosphere and the depletion of existing ecosystem services associated with the accumulation of soil organic matter. Here, we first summarize the results of 35 publications that address land use change from boreal forest to agriculture, with the goal of understanding the magnitude and drivers of carbon stock changes with time-since-land use change. Results from the literature synthesis show that conversion of boreal forest to agriculture can result in up to ~57% of existing soil carbon stocks being lost 30 years after land use change occurs. In addition, a three-way interaction with soil carbon, pH and time-since-land use change is observed where soils become more basic with increasing time-since-land use change, coinciding with declines in soil carbon stocks. This relationship is important when looking at the types of crops communities are interested in growing and the type of agriculture associated with cultivating these crops. Partnered communities have identified crops such as berry bushes, root vegetables, potatoes and corn as crops they are interested in growing. As berry bushes grow in acidic conditions and the other mentioned crops grow in more neutral conditions, site selection and management practices associated with growing these crops in appropriate pH environments will be important for managing soil carbon in new agricultural systems in the NWT. Secondly, we also present community scale soil data assessing variation in soil carbon stocks in relation to potential soil fertility metrics targeted to community identified crops of interest for two communities in the NWT.  We collected 192 soil cores from two communities to determine carbon stocks along gradients of potential agriculture suitability. Our field soil carbon measurements in collaboration with the partnered NWT communities show that land use conversions associated with agricultural development could translate to carbon losses ranging from 2.7-11.4 kg C/m<sup>2</sup> depending on the type of soil, agricultural suitability class, and type of land use change associated with cultivation. These results highlight the importance of managing soil carbon in northern agricultural systems and can be used to emphasize the need for new community scale data relating to agricultural land use change in boreal soils. Through the collection of this data, we hope to provide northern communities with a more robust, community scale product that will allow them to make informed land use decisions relating to the cultivation of crops and the minimization of soil carbon losses while maintaining the culturally important traditional food system.</p>


2019 ◽  
Author(s):  
Pengfei Han ◽  
Xiaohui Lin ◽  
Wen Zhang ◽  
Guocheng Wang

AbstractThe Tibetan Plateau is an important component of the global carbon cycle due to the large permafrost carbon pool and its vulnerability to climate warming. The Tibetan Plateau has experienced a noticeable warming over the past few decades and is projected to continue warming in the future. However, the direction and magnitude of carbon fluxes responses to climate change and elevated CO2concentration under Representative Concentration Pathways (RCP) scenarios in the Tibetan Plateau grassland are poorly known. Here, we used a calibrated and validated biogeochemistry model, CENTURY, to quantify the contributions of climate change and elevated CO2on the future carbon budget in the alpine grassland under three RCP scenarios. Though the Tibetan Plateau grassland was projected a net carbon sink of 16 ~ 25 Tg C yr-1in the 21st century, the capacity of carbon sequestration was predicted to decrease gradually because climate-driven increases in heterotrophic respiration (Rh) (with linear slopes 0.49 ~ 1.62 g C m-2yr-1) was greater than the net primary production (NPP) (0.35 ~ 1.52 g C m-2yr-1). However, the elevated CO2contributed more to plant growth (1.9% ~ 7.3%) than decomposition (1.7% ~ 6.1%), which could offset the warming-induced carbon loss. The interannual and decadal-scale dynamics of the carbon fluxes in the alpine grassland were primarily controlled by temperature, while the role of precipitation became increasingly important in modulating carbon cycle. The strengthened correlation between precipitation and carbon budget suggested that further research should consider the performance of precipitation in evaluating carbon dynamics in a warmer climate scenario.


2020 ◽  
Vol 12 (7) ◽  
pp. 1131 ◽  
Author(s):  
Marco Criado ◽  
Fernando Santos-Francés ◽  
Antonio Martínez-Graña ◽  
Yolanda Sánchez ◽  
Leticia Merchán

The lack of urban sustainability is a widespread deficiency in urban agglomerations. To achieve adequate land use, we present a methodology that allows for: 1) the identification of the impacts caused by urban expansion since 1956 to the present in Salamanca (Spain); and 2) the promotion of a more sustainable future in urban development. A multi-temporal assessment of land use was made by remote sensing, while sustainability criteria were analyzed using the multicriteria analysis (MCA) with Geographical Information Systems (GIS). In addition, we established recommendations for soil carbon management in semi-arid ecosystem soils that contribute to climate change mitigation. The results show an increase of the urbanized area from 3.8% to 22.3% in the studied period, identifying up to 15% of buildings in zones with some type of restriction. In 71% of the cases, urbanization caused the sealing of productive agricultural soils (2519 Ha), almost 20% of which were of the highest quality. In last few decades, an excessive increase of built-up areas in comparison to population dynamics was identified, which causes unnecessary soil sealing that affects the food production and the capacity to mitigate climate change by managing the carbon cycle in the soil.


Sign in / Sign up

Export Citation Format

Share Document