Community composition, structure and productivity in response to nitrogen and phosphorus additions in a temperate meadow

2019 ◽  
Vol 654 ◽  
pp. 863-871 ◽  
Author(s):  
Yinan Zhao ◽  
Bing Yang ◽  
Mingxin Li ◽  
Runqi Xiao ◽  
Keyun Rao ◽  
...  
Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 285 ◽  
Author(s):  
Mengxin Zhao ◽  
Jing Cong ◽  
Jingmin Cheng ◽  
Qi Qi ◽  
Yuyu Sheng ◽  
...  

Subtropical and tropical broadleaf forests play important roles in conserving biodiversity and regulating global carbon cycle. Nonetheless, knowledge about soil microbial diversity, community composition, turnover and microbial functional structure in sub- and tropical broadleaf forests is scarce. In this study, high-throughput sequencing was used to profile soil microbial community composition, and a micro-array GeoChip 5.0 was used to profile microbial functional gene distribution in four sub- and tropical broadleaf forests (HS, MES, HP and JFL) in southern China. The results showed that soil microbial community compositions differed dramatically among all of four forests. Soil microbial diversities in JFL were the lowest (5.81–5.99) and significantly different from those in the other three forests (6.22–6.39). Furthermore, microbial functional gene interactions were the most complex and closest, likely in reflection to stress associated with the lowest nitrogen and phosphorus contents in JFL. In support of the importance of environmental selection, we found selection (78–96%) dominated microbial community assembly, which was verified by partial Mantel tests showing significant correlations between soil phosphorus and nitrogen content and microbial community composition. Taken together, these results indicate that nitrogen and phosphorus are pivotal in shaping soil microbial communities in sub- and tropical broadleaf forests in southern China. Changes in soil nitrogen and phosphorus, in response to plant growth and decomposition, will therefore have significant changes in both microbial community assembly and interaction.


2010 ◽  
Vol 4 (9) ◽  
pp. 1167-1179 ◽  
Author(s):  
Zhili He ◽  
Ye Deng ◽  
Joy D Van Nostrand ◽  
Qichao Tu ◽  
Meiying Xu ◽  
...  

2021 ◽  
Author(s):  
Juan F. Dueñas ◽  
Stefan Hempel ◽  
Jürgen Homeier ◽  
Juan Pablo Suárez ◽  
Matthias C Rillig ◽  
...  

Andean forests are biodiversity hotspots and globally important carbon (C) repositories. This status might be at risk due to increasing rates of atmospheric nutrient deposition. As fungal communities are key in the recirculation of soil nutrients, assessing their responses to soil eutrophication can help establish a link between microbial biodiversity and the sustainability of the C sink status of this region. Beyond mycorrhizal fungi, which have been studied more frequently, a wide range of other fungi associate with the fine root fraction of trees. Monitoring these communities can offer insights into how communities composed of both facultative and obligate root associated fungi are responding to soil eutrophication. Here we document the response of non-mycorrhizal root associated fungal (RAF) communities to a long-term nutrient manipulation experiment. The stand level fine root fraction of an old growth tropical montane forest was sampled after seven years of nitrogen (N) and phosphorus (P) additions. RAF communities were characterized by a deep sequencing approach. As per the resource imbalance model, we expected that asymmetries in the availability of C, N and P elicited by fertilization will lead to mean richness reductions and alterations of the community structure. We recovered moderately diverse fungal assemblages composed by sequence variants classified within a wide set of trophic guilds. While mean richness remained stable, community composition shifted, particularly among Ascomycota and after the addition of P. Fertilization factors, however, only accounted for a minor proportion of the variance in community composition. These findings suggest that, unlike mycorrhizal fungi, RAF communities are less sensitive to shifts in soil nutrient availability. A plausible explanation is that non-mycorrhizal RAF have fundamentally different nutrient acquisition and life history traits, thus allowing them greater stoichiometric plasticity and an array of functional acclimation responses that collectively express as subtle shifts in community level attributes.


mSphere ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Regina B. Bledsoe ◽  
Carol Goodwillie ◽  
Ariane L. Peralta

ABSTRACT In nutrient-limited conditions, plants rely on rhizosphere microbial members to facilitate nutrient acquisition, and in return, plants provide carbon resources to these root-associated microorganisms. However, atmospheric nutrient deposition can affect plant-microbe relationships by changing soil bacterial composition and by reducing cooperation between microbial taxa and plants. To examine how long-term nutrient addition shapes rhizosphere community composition, we compared traits associated with bacterial (fast-growing copiotrophs, slow-growing oligotrophs) and plant (C3 forb, C4 grass) communities residing in a nutrient-poor wetland ecosystem. Results revealed that oligotrophic taxa dominated soil bacterial communities and that fertilization increased the presence of oligotrophs in bulk and rhizosphere communities. Additionally, bacterial species diversity was greatest in fertilized soils, particularly in bulk soils. Nutrient enrichment (fertilized versus unfertilized) and plant association (bulk versus rhizosphere) determined bacterial community composition; bacterial community structure associated with plant functional group (grass versus forb) was similar within treatments but differed between fertilization treatments. The core forb microbiome consisted of 602 unique taxa, and the core grass microbiome consisted of 372 unique taxa. Forb rhizospheres were enriched in potentially disease-suppressive bacterial taxa, and grass rhizospheres were enriched in bacterial taxa associated with complex carbon decomposition. Results from this study demonstrate that fertilization serves as a strong environmental filter on the soil microbiome, which leads to distinct rhizosphere communities and can shift plant effects on the rhizosphere microbiome. These taxonomic shifts within plant rhizospheres could have implications for plant health and ecosystem functions associated with carbon and nitrogen cycling. IMPORTANCE Over the last century, humans have substantially altered nitrogen and phosphorus cycling. Use of synthetic fertilizer and burning of fossil fuels and biomass have increased nitrogen and phosphorus deposition, which results in unintended fertilization of historically low-nutrient ecosystems. With increased nutrient availability, plant biodiversity is expected to decline, and the abundance of copiotrophic taxa is anticipated to increase in bacterial communities. Here, we address how bacterial communities associated with different plant functional types (forb, grass) shift due to long-term nutrient enrichment. Unlike other studies, results revealed an increase in bacterial diversity, particularly of oligotrophic bacteria in fertilized plots. We observed that nutrient addition strongly determines forb and grass rhizosphere composition, which could indicate different metabolic preferences in the bacterial communities. This study highlights how long-term fertilization of oligotroph-dominated wetlands could alter diversity and metabolism of rhizosphere bacterial communities in unexpected ways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas Trombetta ◽  
Francesca Vidussi ◽  
Cécile Roques ◽  
Sébastien Mas ◽  
Marco Scotti ◽  
...  

AbstractTo identify the environmental factors that drive plankton community composition and structure in coastal waters, a shallow northwestern Mediterranean lagoon was monitored from winter to spring in two contrasting years. The campaign was based on high-frequency recordings of hydrological and meteorological parameters and weekly samplings of nutrients and the plankton community. The collected data allowed the construction of correlation networks, which revealed that water temperature was the most important factor governing community composition, structure and succession at different trophic levels, suggesting its ubiquitous food web control. Temperature favoured phytoplanktonic flagellates (Cryptophyceae, Chrysophyceae, and Chlorophyceae) and ciliates during winter and early spring. In contrast, it favoured Bacillariophyceae, dinoflagellates, phytoplankton < 6 µm and aloricate Choreotrichida during spring. The secondary factors were light, which influenced phytoplankton, and wind, which may regulate turbidity and the nutrient supply from land or sediment, thus affecting benthic species such as Nitzschia sp. and Uronema sp. or salinity-tolerant species such as Prorocentrum sp. The central role of temperature in structuring the co-occurrence network suggests that future global warming could deeply modify plankton communities in shallow coastal zones, affecting whole-food web functioning.


2019 ◽  
Vol 40 ◽  
pp. 20-31 ◽  
Author(s):  
Juan Pablo Almeida ◽  
Nicholas P. Rosenstock ◽  
Benjamin Forsmark ◽  
Johan Bergh ◽  
Håkan Wallander

2015 ◽  
Vol 75 (4 suppl 1) ◽  
pp. 150-157
Author(s):  
A. P. F. Pires ◽  
A. Caliman ◽  
T. Laque ◽  
F. A. Esteves ◽  
V. F. Farjalla

Abstract Resource identity and composition structure bacterial community, which in turn determines the magnitude of bacterial processes and ecological services. However, the complex interaction between resource identity and bacterial community composition (BCC) has been poorly understood so far. Using aquatic microcosms, we tested whether and how resource identity interacts with BCC in regulating bacterial respiration and bacterial functional diversity. Different aquatic macrophyte leachates were used as different carbon resources while BCC was manipulated through successional changes of bacterial populations in batch cultures. We observed that the same BCC treatment respired differently on each carbon resource; these resources also supported different amounts of bacterial functional diversity. There was no clear linear pattern of bacterial respiration in relation to time succession of bacterial communities in all leachates, i.e. differences on bacterial respiration between different BCC were rather idiosyncratic. Resource identity regulated the magnitude of respiration of each BCC, e.g. Ultricularia foliosa leachate sustained the greatest bacterial functional diversity and lowest rates of bacterial respiration in all BCC. We conclude that both resource identity and the BCC interact affecting the pattern and the magnitude of bacterial respiration in aquatic ecosystems.


Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 445 ◽  
Author(s):  
Christoph Rosinger ◽  
Hans Sandén ◽  
Bradley Matthews ◽  
Mathias Mayer ◽  
Douglas Godbold

Ectomycorrhizal (EM) fungi are pivotal drivers of ecosystem functioning in temperate and boreal forests. They constitute an important pathway for plant-derived carbon into the soil and facilitate nitrogen and phosphorus acquisition. However, the mechanisms that drive ectomycorrhizal diversity and community composition are still subject to discussion. We investigated patterns in ectomycorrhizal diversity, community composition, and exploration types on root tips in Fagus sylvatica,Picea abies, and Pinus sylvestris stands across Europe. Host tree species is the most important factor shaping the ectomycorrhizal community as well as the distribution of exploration types. Moreover, abiotic factors such as soil properties, N deposition, temperature, and precipitation, were found to significantly influence EM diversity and community composition. A clear differentiation into functional traits by means of exploration types was shown for all ectomycorrhizal communities across the three analyzed tree species. Contact and short-distance exploration types were clearly significantly more abundant than cord- or rhizomorph-forming long-distance exploration types of EM fungi. Medium-distance exploration types were significantly lower in abundance than contact and short-distance types, however they were the most frequent EM taxa and constituted nearly half of the EM community. Furthermore, EM taxa exhibit distinct ecological ranges, and the type of soil exploration seemed to determine whether EM taxa have small or rather big environmental ranges.


Sign in / Sign up

Export Citation Format

Share Document