scholarly journals Design parameters for nitrogen removal by constructed wetlands treating mine waters and municipal wastewater under Nordic conditions

2019 ◽  
Vol 662 ◽  
pp. 559-570 ◽  
Author(s):  
Katharina Kujala ◽  
Teemu Karlsson ◽  
Soile Nieminen ◽  
Anna-Kaisa Ronkanen
Author(s):  
Carlos Nakase ◽  
Florentina Zurita ◽  
Graciela Nani ◽  
Guillermo Reyes ◽  
Gregorio Fernández-Lambert ◽  
...  

Vertical partially saturated (VPS) constructed wetlands (CWs) are a novel wastewater treatment system for which little information is known about its design parameters and performance under tropical climates. The objective of this study is to evaluate the nitrogen removal process from domestic wastewater and the production of tropical ornamental plants (Canna hybrids and Zantedeschia aethiopica) in VPS CWs at a mesocosms scale. Nine VPS CWs, with a free-flow zone of 16 cm and a saturated zone of 16 cm, were used as experimental units. Three units were planted with Canna hybrids., and three, with Zantedeschia aethiopica (one plant per unit); the remaining three units were established as controls without vegetation. They were fed with domestic wastewater intermittently and evaluated for the elimination of COD, N-NH4, N-NO3, Norg, NT, and PT. The results showed an increase in the removal for some pollutants in the vegetated systems, i.e., N-NH4 (35%), Norg (16%), TN (25%), and TP (47%) in comparison to the unvegetated systems. While N-NO3 removal showed better removal in 10% of the systems without vegetation, no significant differences were found (p > 0.05) for COD removal. The aerobic and anaerobic conditions in the VPS CWs favor the elimination of pollutants in the systems, and also the development of the tropical species evaluated in this study; good development was exhibited by a high growth rate and biomass production.


1995 ◽  
Vol 32 (3) ◽  
pp. 59-67 ◽  
Author(s):  
Kevin D. White

Constructed wetland technology is currently evolving into an acceptable, economically competitive alternative for many wastewater treatment applications. Although showing great promise for removing carbonaceous materials from wastewater, wetland systems have not been as successful at nitrification. This is primarily due to oxygen limitations. Nitrification does occur in conventional wetland treatment systems, but typically requires long hydraulic retention times. This paper describes a study that first evaluated the capability of subsurface flow constructed wetlands to treat a high strength seafood processor wastewater and then evaluated passive aeration configurations and effluent recirculation with respect to nitrogen treatment efficiency. The first stage of a 2-stage wetland treatment system exhibited a relatively short hydraulic retention time and was designed for BOD removal only. The second stage wetland employed an unsaturated inlet zone and effluent recirculation to enhance nitrification. Results indicate that organic loading, and thus BOD removal, in the first stage wetland is key to optimal nitrification. Passive aeration through an unsaturated inlet zone and recirculation achieved up to 65-70 per cent ammonia nitrogen removal at hydraulic retention times of about 3.5 days. Inlet zone configuration and effluent recirculation is shown to enhance the nitrogen removal capability of constructed wetland treatment systems.


2014 ◽  
Vol 955-959 ◽  
pp. 3393-3399 ◽  
Author(s):  
Wei Zheng ◽  
Yan Ming Yang ◽  
Yun Long Li ◽  
Jian Qiu Zheng

The process technique and design parameters of project of Solar Ozonic Ecological Sewage Treatment Plant (short for SOESTP) which consists of anaerobic reactor, horizontal subsurface flow (HSSF) constructed wetlands(CWs) and the combination of solar power and ozone disinfection are described, the paper further examines the removal efficiency for treating rural domestic sewage, running expense and recycling ability of product water. The results show that the average percentage removal values of CODcr,BOD5,SS,TN,NH3-N,TP range from 95.6% to 98.0%, 96.0% to 98.7%, 93.1% to 96.1%, 97.0% to 98.9%, 96.9% to 99.5%, 98.2% to 99.6%, respectively, the reduction of fecal coliform (FC) reaches 99.9%, the effluent quality meets the first level A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant(GB18918-2002). The running cost of SOESTP is 0.063yuan/ m3, saves much more than traditional sewage treatment, and the ozone water obtained from the reservoir will be an ideal choice for disinfection .The system has characteristics of easy manipulation, low operating cost, achieving advanced water, energy conservation and environment protection, is thought to be very suitable for use as the promotion of rural small - scale sewage treatment.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 346
Author(s):  
Keugtae Kim ◽  
Yong-Gyun Park

Conventional biological nutrient removal processes in municipal wastewater treatment plants are energy-consuming, with oxygen supply accounting for 45–75% of the energy expenditure. Many recent studies examined the implications of the anammox process in sidestream wastewater treatment to reduce energy consumption, however, the process did not successfully remove nitrogen in mainstream wastewater treatment with relatively low ammonia concentrations. In this study, blue light was applied as an inhibitor of nitrite-oxidizing bacteria (NOB) in a photo sequencing batch reactor (PSBR) containing raw wastewater. This simulated a biological nitrogen removal system for the investigation of its application potential in nitrite accumulation and nitrogen removal. It was found that blue light illumination effectively inhibited NOB rather than ammonia-oxidizing bacteria due to their different sensitivity to light, resulting in partial nitrification. It was also observed that the NOB inhibition rates were affected by other operational parameters like mixed liquor suspended solids (MLSS) concentration and sludge retention time (SRT). According to the obtained results, it was concluded that the process efficiency of partial nitrification and anammox (PN/A) could be significantly enhanced by blue light illumination with appropriate MLSS concentration and SRT conditions.


Author(s):  
Manoj Kumar ◽  
Rajesh Singh

In the present study area-based, pollutant removal kinetic analysis was considered using the Zero-order, first-order decay and efficiency loss (EL) models in the constructed wetlands (CWs) for municipal wastewater treatment....


Sign in / Sign up

Export Citation Format

Share Document