Integrating satellite observations and human water use data to estimate changes in key components of terrestrial water storage in a semi-arid region of North China

2020 ◽  
Vol 698 ◽  
pp. 134171 ◽  
Author(s):  
Wenchao Sun ◽  
Yongliang Jin ◽  
Jingshan Yu ◽  
Guoqiang Wang ◽  
Baolin Xue ◽  
...  
2019 ◽  
Vol 666 ◽  
pp. 849-857 ◽  
Author(s):  
Amar Razzaq ◽  
Ping Qing ◽  
Muhammad Asad ur Rehman Naseer ◽  
Muhammad Abid ◽  
Mumtaz Anwar ◽  
...  

2020 ◽  
Author(s):  
Stefania Camici ◽  
Luca Brocca ◽  
Christian Massari ◽  
Gabriele Giuliani ◽  
Nico Sneeuw ◽  
...  

<p>Water is at the centre of economic and social development; it is vital to maintain health, grow food, manage the environment, produce renewable energy, support industrial processes and create jobs. Despite the importance of water, to date over one third of the world's population still lacks access to drinking water resources and this number is expected to increase due to climate change and outdated water management. As over half of the world’s potable water supply is extracted from rivers, either directly or from reservoirs, understanding the variability of the stored water on and below landmasses, i.e., runoff, is of primary importance. Apart from river discharge observation networks that suffer from many known limitations (e.g., low station density and often incomplete temporal coverage, substantial delay in data access and large decline in monitoring capacity), runoff can be estimated through model-based or observation-based approaches whose outputs can be highly model or data dependent and characterised by large uncertainties.</p><p> </p><p>On this basis, developing innovative methods able to maximize the recovery of information on runoff contained in current satellite observations of climatic and environmental variables (i.e., precipitation, soil moisture, terrestrial water storage anomalies and land cover) becomes mandatory and urgent. In this respect, within the European Space Agency (ESA) STREAM Project (SaTellite based Runoff Evaluation And Mapping), a solid “observational” approach, exploiting space-only observations of Precipitation (P), Soil Moisture (SM) and Terrestrial Water Storage Anomalies (TWSA) to derive total runoff has been developed and validated. Different P and SM products have been considered. For P, both in situ and satellite-based (e.g., Tropical Rainfall Measuring Mission, TRMM 3B42) datasets have been collected; for SM, Advanced SCATterometer, ASCAT, and ESA Climate Change Initiative, ESA CCI, soil moisture products have been extracted. TWSA time series are obtained from the latest Goddard Space Flight Center’s global mascon model, which provides storage anomalies and their uncertainties in the form of monthly surface mass densities per approximately 1°x1° blocks.</p><p> </p><p>Total runoff estimates have been simulated for the period 2003-2017 at 5 pilot basins across the world (Mississippi, Amazon, Niger, Danube and Murray Darling) characterised by different physiographic/climatic features. Results proved the potentiality of satellite observations to estimate runoff at daily time scale and at spatial resolution better than GRACE spatial sampling. In particular, by using satellite TRMM 3B42 rainfall data and ESA CCI soil moisture data, very good runoff estimates have been obtained over Amazon basin, with a Kling-Gupta efficiency (KGE) index greater than 0.92 both at the closure and over several inner stations in the basin. Good results found for Mississippi and Danube are also encouraging with KGE index greater than 0.75 for both the basins.</p>


Author(s):  
Rômulo M. O. de Freitas ◽  
Jeferson L. D. Dombroski ◽  
Francisco C. L. de Freitas ◽  
Narjara W. Nogueira ◽  
Tiago S. Leite ◽  
...  

ABSTRACT The resilience of crops to drought depends heavily on the cultural practices adopted, which can have a direct effect on water use efficiency. The aim of this study was to assess the influence of irrigation intervals on the growth, water consumption and water use efficiency of cowpea crops (cv. BRS Guariba) under conventional and no-tillage systems. The experiment was carried out in the semi-arid region of Rio Grande do Norte, Brazil, using a split-plot in a randomised complete block design, with four replications. Treatments consisted of two cultivation systems in the whole plots (conventional and no-tillage) and six irrigation intervals in the subplots (2, 6, 10, 14, 18 and 22 days) which were applied at full bloom. The biomass of the different parts of the plant, leaf area and leaf area index were assessed at 64 days after sowing (DAS) and grain yield, water consumption and water use efficiency at 70 DAS. No-tillage is a promising cultivation technique for cowpea crops, promoting higher grain yield and water use efficiency under semi-arid conditions. This system allows cowpea cultivation with irrigation intervals of 10 or 14 days, with no or small reduction in yield, respectively.


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 75 ◽  
Author(s):  
Ahmad Nemati ◽  
Seyed Hossein Ghoreishi Najafabadi ◽  
Gholamreza Joodaki ◽  
S. Saeid Mousavi Nadoushani

Drought monitoring needs comprehensive and integrated meteorological and hydrologic data. However, such data are generally not available in extensive catchments. The present study aimed to analyze drought in the central plateau catchment of Iran using the terrestrial water storage deficit index (TSDI). In this arid catchment, the meteorological and hydrologic observed data are scarce. First, the time series of terrestrial water storage changes (TWSC) obtained from the gravity recovery and climate experiment (GRACE) was calculated and validated by the water budget output. Then, the studied area was divided into semi-arid, arid, and hyper-arid zones and the common drought indices of SPI and RDIe within a timescale of 3, 6, and 12 months were calculated to compare the results obtained from the TSDI by using the meteorological data of 105 synoptic stations. Based on the results, the study area experienced a drought with extreme severity and expansion during 2007–2008. The drought spatial distribution map obtained from three indices indicated good conformity. Based on the maps, the severity, duration, and frequency of drought in the semi-arid zone were greater than that in other zones, while no significant drought occurred in the hyper-arid zone. Furthermore, the temporal distribution of drought in all three zones indicated that the TSDI could detect all short- and long-term droughts. The study results showed that the TSDI is a reliable, integrated, and comprehensive index. Using this index in arid areas with little field data led to some valuable results for planning and water resource management.


Sign in / Sign up

Export Citation Format

Share Document