An observation-based approach for global runoff estimation: exploiting satellite soil moisture and Grace

Author(s):  
Stefania Camici ◽  
Luca Brocca ◽  
Christian Massari ◽  
Gabriele Giuliani ◽  
Nico Sneeuw ◽  
...  

<p>Water is at the centre of economic and social development; it is vital to maintain health, grow food, manage the environment, produce renewable energy, support industrial processes and create jobs. Despite the importance of water, to date over one third of the world's population still lacks access to drinking water resources and this number is expected to increase due to climate change and outdated water management. As over half of the world’s potable water supply is extracted from rivers, either directly or from reservoirs, understanding the variability of the stored water on and below landmasses, i.e., runoff, is of primary importance. Apart from river discharge observation networks that suffer from many known limitations (e.g., low station density and often incomplete temporal coverage, substantial delay in data access and large decline in monitoring capacity), runoff can be estimated through model-based or observation-based approaches whose outputs can be highly model or data dependent and characterised by large uncertainties.</p><p> </p><p>On this basis, developing innovative methods able to maximize the recovery of information on runoff contained in current satellite observations of climatic and environmental variables (i.e., precipitation, soil moisture, terrestrial water storage anomalies and land cover) becomes mandatory and urgent. In this respect, within the European Space Agency (ESA) STREAM Project (SaTellite based Runoff Evaluation And Mapping), a solid “observational” approach, exploiting space-only observations of Precipitation (P), Soil Moisture (SM) and Terrestrial Water Storage Anomalies (TWSA) to derive total runoff has been developed and validated. Different P and SM products have been considered. For P, both in situ and satellite-based (e.g., Tropical Rainfall Measuring Mission, TRMM 3B42) datasets have been collected; for SM, Advanced SCATterometer, ASCAT, and ESA Climate Change Initiative, ESA CCI, soil moisture products have been extracted. TWSA time series are obtained from the latest Goddard Space Flight Center’s global mascon model, which provides storage anomalies and their uncertainties in the form of monthly surface mass densities per approximately 1°x1° blocks.</p><p> </p><p>Total runoff estimates have been simulated for the period 2003-2017 at 5 pilot basins across the world (Mississippi, Amazon, Niger, Danube and Murray Darling) characterised by different physiographic/climatic features. Results proved the potentiality of satellite observations to estimate runoff at daily time scale and at spatial resolution better than GRACE spatial sampling. In particular, by using satellite TRMM 3B42 rainfall data and ESA CCI soil moisture data, very good runoff estimates have been obtained over Amazon basin, with a Kling-Gupta efficiency (KGE) index greater than 0.92 both at the closure and over several inner stations in the basin. Good results found for Mississippi and Danube are also encouraging with KGE index greater than 0.75 for both the basins.</p>


2021 ◽  
Author(s):  
Stefania Camici ◽  
Gabriele Giuliani ◽  
Luca Brocca ◽  
Christian Massari ◽  
Angelica Tarpanelli ◽  
...  

Abstract. This paper presents an innovative approach, STREAM – SaTellite based Runoff Evaluation And Mapping – to derive daily river discharge and runoff estimates from satellite soil moisture, precipitation and terrestrial water storage anomalies observations. Within a very simple model structure, the first two variables (precipitation and soil moisture) are used to estimate the quick-flow river discharge component while the terrestrial water storage anomalies are used for obtaining its complementary part, i.e., the slow-flow river discharge component. The two are then summed up to obtain river discharge and runoff estimates. The method is tested over the Mississippi river basin for the period 2003–2016 by using Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) rainfall data, European Space Agency Climate Change Initiative (ESA CCI) soil moisture data and Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage data. Despite the model simplicity, relatively high-performance scores are obtained in river discharge simulations, with a Kling-Gupta efficiency index greater than 0.65 both at the outlet and over several inner stations used for model calibration highlighting the high information content of satellite observations on surface processes. Potentially useful for multiple operational and scientific applications (from flood warning systems to the understanding of water cycle), the added-value of the STREAM approach is twofold: 1) a simple modelling framework, potentially suitable for global runoff monitoring, at daily time scale when forced with satellite observations only, 2) increased knowledge on the natural processes, human activities and on their interactions on the land.



2017 ◽  
Vol 21 (9) ◽  
pp. 4533-4549 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS), providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of TWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of three GRACE ΔTWS signals from five commonly used gridded products (i.e. NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil moisture from the Global Land Data Assimilation System (GLDAS) in two sub-basins (LVB: Lake Victoria Basin; LKB: Lake Kyoga Basin) of the Upper Nile Basin. The analysis extends from January 2003 to December 2012, but focuses on a large and accurately observed reduction in ΔTWS of 83 km3 from 2003 to 2006 in the Lake Victoria Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 80 km3 (JPL-Mascons) to 69 and 31 km3 for GRGS and GRCTellus respectively. Representation of the phase in TWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons, and GRCTellus (ensemble mean of CSR, JPL, and GFZ time-series data), explaining 90, 84, and 75 % of the variance respectively in "in situ" or "bottom-up" ΔTWS in the LVB. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in changes in soil-moisture storage (ΔSMS) modelled by GLDAS LSMs (CLM, NOAH, VIC) and the low annual amplitudes in ΔGWS (e.g. 1.8–4.9 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products; this uncertainty is disregarded in analyses of ΔTWS and individual stores applying a single GRACE product.



Author(s):  
Emad Hasan ◽  
Aondover Tarhule

GRACE-derived Terrestrial Water Storage Anomalies (TWSA) continue to be used in an expanding array of studies to analyze numerous processes and phenomena related to terrestrial water storage dynamics, including groundwater depletions, lake storage variations, snow, and glacial mass changes, as well as floods, droughts, among others. So far, however, few studies have investigated how the factors that affect total water storage (e.g., precipitation, runoff, soil moisture, evapotranspiration) interact and combine over space and time to produce the mass variations that GRACE detects. This paper is an attempt to fill that gap and stimulate needed research in this area. Using the Nile River Basin as case study, it explicitly analyzes nine hydroclimatic and anthropogenic processes, as well as their relationship to TWS in different climatic zones in the Nile River Basin. The analytic method employed the trends in both the dependent and independent variables applying two geographically multiple regression (GMR) approaches: (i) an unweighted or ordinary least square regression (OLS) model in which the contributions of all variables to TWS variability are deemed equal at all locations; and (ii) a geographically weighted regression (GWR) which assigns a weight to each variable at different locations based on the occurrence of trend clusters, determined by Moran’s cluster index. In both cases, model efficacy was investigated using standard goodness of fit diagnostics. The OLS showed that trends in five variables (i.e., precipitation, runoff, surface water soil moisture, and population density) significantly (p<0.0001) explain the trends in TWSA for the basin at large. However, the models R2 value is only 0.14. In contrast, the GWR produced R2 values ranging between 0.40 and 0.89, with an average of 0.86 and normally distributed standard residuals. The models retained in the GWR differ by climatic zone. The results showed that all nine variables contribute significantly to the trend in TWS in the Tropical region; population density is an important contributor to TWSA variability in all zones; ET and Population density are the only significant variables in the semiarid zone. This type of information is critical for developing robust statistical models for reconstructing time series of proxy GRACE anomalies that predate the launch of the GRACE mission and for gap-filling between GRACE and GRACE-FO.



2017 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS) providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of ΔTWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of GRACE ΔTWS signals from 5 commonly-used gridded products (i.e., NASA's GRCTellus: CSR, JPL GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil-moisture from the Global Land Data Assimilation System (GLDAS). The focus of this analysis is a large and accurately observed reduction in ΔTWS of 75 km3 from 2004 to 2006 in Lake Victoria in the Upper Nile Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 68 km3 (GRGS) to 50 km3 and 26 km3 for JPL-Mascons and GRCTellus, respectively. Representation of the phase in ΔTWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons and GRCTellus (ensemble mean of CSR, JPL and GFZ time-series data) explaining 91 %, 85 %, and 77 % of the variance, respectively, in in-situ ΔTWS. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in modelled changes in soil-moisture storage (ΔSMS) and the low annual amplitudes in ΔGWS (e.g., 3.5 to 4.4 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products.



2021 ◽  
Author(s):  
Tina Trautmann ◽  
Sujan Koirala ◽  
Nuno Carvalhais ◽  
Andreas Güntner ◽  
Martin Jung

Abstract. So far, various studies aimed at decomposing the integrated terrestrial water storage variations observed by satellite gravimetry (GRACE, GRACE-FO) with the help of large-scale hydrological models. While the results of the storage decomposition depend on model structure, little attention has been given to the impact of the way how vegetation is represented in these models. Although vegetation structure and activity represent the crucial link between water, carbon and energy cycles, their representation in large-scale hydrological models remains a major source of uncertainty. At the same time, the increasing availability and quality of Earth observation-based vegetation data provide valuable information with good prospects for improving model simulations and gaining better insights into the role of vegetation within the global water cycle. In this study, we use observation-based vegetation information such as vegetation indices and rooting depths for spatializing the parameters of a simple global hydrological model to define infiltration, root water uptake and transpiration processes. The parameters are further constrained by considering observations of terrestrial water storage anomalies (TWS), soil moisture, evapotranspiration (ET) and gridded runoff (Q) estimates in a multi-criteria calibration approach. We assess the implications of including vegetation on the simulation results, with a particular focus on the partitioning between water storage components. To isolate the effect of vegetation, we compare a model experiment with vegetation parameters varying in space and time to a baseline experiment in which all parameters are calibrated as static, globally uniform values. Both experiments show good overall performance, but including vegetation data led to even better performance and more physically plausible parameter values. Largest improvements regarding TWS and ET were seen in supply-limited (semi-arid) regions and in the tropics, whereas Q simulations improve mainly in northern latitudes. While the total fluxes and storages are similar, accounting for vegetation substantially changes the contributions of snow and different soil water storage components to the TWS variations, with the dominance of an intermediate water pool that interacts with the fast plant accessible soil moisture and the delayed water storage. The findings indicate the important role of deeper moisture storages as well as groundwater-soil moisture-vegetation interactions as a key to understanding TWS variations. We highlight the need for further observations to identify the adequate model structure rather than only model parameters for a reasonable representation and interpretation of vegetation-water interactions.



Land ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 15 ◽  
Author(s):  
Sabastine Ugbaje ◽  
Thomas Bishop

Vegetation activity in many parts of Africa is constrained by dynamics in the hydrologic cycle. Using satellite products, the relative importance of soil moisture, rainfall, and terrestrial water storage (TWS) on vegetation greenness seasonality and anomaly over Africa were assessed for the period between 2003 and 2015. The possible delayed response of vegetation to water availability was considered by including 0–6 and 12 months of the hydrological variables lagged in time prior to the vegetation greenness observations. Except in the drylands, the relationship between vegetation greenness seasonality and the hydrological measures was generally strong across Africa. Contrarily, anomalies in vegetation greenness were generally less coupled to anomalies in water availability, except in some parts of eastern and southern Africa where a moderate relationship was evident. Soil moisture was the most important variable driving vegetation greenness in more than 50% of the areas studied, followed by rainfall when seasonality was considered, and by TWS when the monthly anomalies were used. Soil moisture and TWS were generally concurrent or lagged vegetation by 1 month, whereas precipitation lagged vegetation by 1–2 months. Overall, the results underscore the pre-eminence of soil moisture as an indicator of vegetation greenness among satellite measured hydrological variables.



2019 ◽  
Vol 124 (14) ◽  
pp. 7786-7796 ◽  
Author(s):  
Ajiao Chen ◽  
Huade Guan ◽  
Okke Batelaan ◽  
Xinping Zhang ◽  
Xinguang He


2019 ◽  
Vol 231 ◽  
pp. 111259 ◽  
Author(s):  
Xiaoming Xie ◽  
Bin He ◽  
Lanlan Guo ◽  
Chiyuan Miao ◽  
Yafeng Zhang


2021 ◽  
Author(s):  
Natthachet Tangdamrongsub ◽  
Michael F. Jasinski ◽  
Peter Shellito

Abstract. Accurate estimation of terrestrial water storage (TWS) at a meaningful spatiotemporal resolution is important for reliable assessments of regional water resources and climate variability. Individual components of TWS include soil moisture, snow, groundwater, and canopy storage and can be estimated from the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model. The spatial resolution of CABLE is currently limited to 0.5° by the resolution of soil and vegetation datasets that underlie model parameterizations, posing a challenge to using CABLE for hydrological applications at a local scale. This study aims to improve the spatial detail (from 0.5° to 0.05°) and timespan (1981–2012) of CABLE TWS estimates using rederived model parameters and high-resolution meteorological forcing. In addition, TWS observations derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are assimilated into CABLE to improve TWS accuracy. The success of the approach is demonstrated in Australia, where multiple ground observation networks are available for validation. The evaluation process is conducted using four different case studies that employ different model spatial resolutions and include or omit GRACE data assimilation (DA). We find that the CABLE 0.05° developed here improves TWS estimates in terms of accuracy, spatial resolution, and long-term water resource assessment reliability. The inclusion of GRACE DA increases the accuracy of groundwater storage (GWS) estimates and has little impact on surface soil moisture or evapotranspiration. The use of improved model parameters and improved state estimations (via GRACE DA) together is recommended to achieve the best GWS accuracy. The workflow elaborated in this paper relies only on publicly accessible global datasets, allowing reproduction of the 0.05° TWS estimates in any study region.



Sign in / Sign up

Export Citation Format

Share Document