Coupling of biochar-mediated absorption and algal-bacterial system to enhance nutrients recovery from swine wastewater

2020 ◽  
Vol 701 ◽  
pp. 134935 ◽  
Author(s):  
Jiajia Yu ◽  
Hancui Hu ◽  
Xiaodan Wu ◽  
Ting Zhou ◽  
Yuhuan Liu ◽  
...  
Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 594
Author(s):  
Run-Feng Chen ◽  
Tao Liu ◽  
Hong-Wei Rong ◽  
Hai-Tao Zhong ◽  
Chun-Hai Wei

Anaerobically treated swine wastewater contains large amounts of orthophosphate phosphorus, ammonium nitrogen and organic substances with potential nutrients recovery via struvite electrochemical precipitation post-treatment. Lab-scale batch experiments were systematically conducted in this study to investigate the effects of initial pH, current density, organic substances upon nutrients removal, and precipitates quality (characterized by X-ray diffraction, scanning electron microscopy and element analysis via acid dissolution method) during the struvite electrochemical precipitation process. The optimal conditions for the initial pH of 7.0 and current density of 4 mA/cm2 favoured nutrients removal and precipitates quality (struvite purity of up to 94.2%) in the absence of organic substances. By contrast, a more adverse effect on nutrients removal, morphology and purity of precipitates was found by humic acid than by sodium alginate and bovine albumin in the individual presence of organic substances. Low concentration combination of bovine albumin, sodium alginate, and humic acid showed antagonistic inhibition effects, whereas a high concentration combination showed the accelerating inhibition effects. Initial pH adjustment from 7 to 8 could effectively mitigate the adverse effects on struvite electrochemical precipitation under high concentration combined with organic substances (500 mg/L bovine albumin, 500 mg/L sodium alginate, and 1500 mg/L humic acid); this may help improve struvite electrochemical precipitation technology in practical application for nutrients recovery from anaerobically treated swine wastewater.


2016 ◽  
Vol 15 (10) ◽  
pp. 2261-2266
Author(s):  
Xiaowei Li ◽  
Jie Zhang ◽  
Weiwei Zhao ◽  
Xuewen Yi ◽  
Wei Lin ◽  
...  

2021 ◽  
Vol 232 (1) ◽  
Author(s):  
Fátima Resende Luiz Fia ◽  
Antonio Teixeira de Matos ◽  
Ronaldo Fia ◽  
Mateus Pimentel de Matos ◽  
Alisson Carraro Borges ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 882
Author(s):  
Saulo Brito-Espino ◽  
Alejandro Ramos-Martín ◽  
Sebastian O. Pérez-Báez ◽  
Carlos Mendieta-Pino ◽  
Federico Leon-Zerpa

Anaerobic lagoons are natural wastewater treatment systems suitable for swine farms in small communities due to its low operational and building costs, as well as for the environmental sustainability that these technologies enable. The local weather is one of the factors which greatly influences the efficiency of the organic matter degradation within anaerobic lagoons, since microbial growth is closely related to temperature. In this manuscript, we propose a mathematical model which involves the two-dimensional Stokes, advection–diffusion-reaction and heat transfer equations for an unstirred fluid flow. Furthermore, the Anaerobic Digestion Model No1 (ADM1), developed by the International Water Association (IWA), has been implemented in the model. The partial differential equations resulting from the model, which involve a large number of state variables that change according to the position and the time, are solved through the use of the Finite Element Method. The results of the simulations indicated that the methodology is capable of predicting reasonably well the steady-state of the concentrations for all processes that take place in the anaerobic digestion and for each one of the variables considered; cells, organic matter, nutrients, etc. In view of the results, it can be concluded that the model has significant potential for the design and the study of anaerobic cells’ behaviour within free flow systems.


2021 ◽  
Vol 9 (3) ◽  
pp. 105019
Author(s):  
Van-Giang Le ◽  
Dai-Viet N. Vo ◽  
Nhat-Huy Nguyen ◽  
Yu-Jen Shih ◽  
Chi-Thanh Vu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document