Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates

2021 ◽  
Vol 772 ◽  
pp. 145522
Author(s):  
Wenqi Wang ◽  
Ming Chen ◽  
Dongbo Wang ◽  
Ming Yan ◽  
Zhifeng Liu
2021 ◽  
Author(s):  
Changquan Zhang ◽  
Chaolin Li ◽  
Gang Chen ◽  
Fei Ji ◽  
Yiyong Shen ◽  
...  

Sulfate radical based photocatalysis is recognized as an effective approach for the photodegradation of organic pollutants in wastewater. To overcome the defects of weak visible light absorptivity and low catalytic...


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yi Chen ◽  
Yan Gu ◽  
Nan Li ◽  
Wangyang Lu ◽  
Wenxing Chen

Ordered mesoporous carbon (OMC) materials have received attention for use as supports in highly efficient catalytic systems because of their excellent properties. We used epoxy compound 2,3-epoxypropyl trimethylammonium chloride (EPTAC) to modify cobalt tetraaminophthalocyanine (CoTAPc) and obtained a novel catalyst (OMC-CoTAPc-EPTAC) based on OMC-bonded CoTAPc-EPTAC that could oxidize Acid Red 1 (AR1) dyes by hydrogen peroxide (H2O2) activation under neutral conditions. OMC enhanced the catalytic performance of OMC-CoTAPc-EPTAC, which resulted in the combined high catalytic activity and high stability. Because of its large surface area and tunable pore texture, OMC has high substrate accessibility, and the modification of the catalyst with EPTAC could promote adsorption of the target substrate into OMC, which achieved the aim of in situ catalytic oxidation with enrichment of the target substrate and improved the catalytic efficiency significantly. Electron paramagnetic resonance spin-trap experiments confirmed that the OMC-CoTAPc-EPTAC/H2O2system had a nonradical catalytic mechanism, and the high-valent cobalt-oxo intermediates and generated holes were speculated to act as dominant oxidation species for the catalytic degradation of AR1. These results demonstrated a new strategy for the elimination of low-concentration organic pollutants.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1299
Author(s):  
Donatos Manos ◽  
Kleopatra Miserli ◽  
Ioannis Konstantinou

Since environmental pollution by emerging organic contaminants is one of the most important problems, gaining ground year after year, the development of decontamination technologies of water systems is now imperative. Advanced oxidation processes (AOPs) with the formation of highly reactive radicals can provide attractive technologies for the degradation of organic pollutants in water systems. Among several AOPs that can be applied for the formation of active radicals, this review study focus on sulfate radical based-AOPs (SR-AOPs) through the heterogeneous catalytic activation of persulfate (PS) or peroxymonosulfate (PMS) using perovskite and spinel oxides as catalysts. Perovskites and spinels are currently receiving high attention and being used in substantial applications in the above research area. The widespread use of these materials is based mainly in the possibilities offered by their structure as it is possible to introduce into their structures different metal cations or to partially substitute them, without however destroying their structure. In this way a battery of catalysts with variable catalytic activities can be obtained. Due to the fact that Co ions have been reported to be one of the best activators of PMS, special emphasis has been placed on perovskite/spinel catalysts containing cobalt in their structure for the degradation of organic pollutants through heterogeneous catalysis. Among spinel materials, spinel ferrites (MFe2O4) are the most used catalysts for heterogeneous activation of PMS. Specifically, catalysts with cobalt ion in the A position were reported to be more efficient as PMS activators for the degradation of most organic pollutants compared with other transition metal catalysts. Substituted or immobilized catalysts show high rates of degradation, stability over a wider pH area and also address better the phenomena of secondary contamination by metal leaching, thus an effective method to upgrade catalytic performance.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 852
Author(s):  
Goswami ◽  
Jiang ◽  
Petri

Ozone possesses high selectivity in the oxidation of organic pollutants. It actively reacts with electron donating participants which contain π bonds and non-protonated amines groups. The removal efficiency of organic pollutants hugely depends upon the pollutants’ initial concentration and amount of ozone supplied. This study was conducted at Zweckverband Bodensee-Wasserversorgung (Lake Constance Water Supply), Germany. The prime objective of the research was to observe the performance of diuron and gabapentin ozonation for low ozone doses, therefore meeting the real application requirements of the water treatment plant. Thereby, 1 mg·L−1 of the given organic pollutants was chosen for the treatment. The ozone with a dosage of ≈0.68–1.01 mg·L−1 was generated and homogeneously mixed into Lake Constance water in a semi-batch reactor system. The adequate aliquots of diuron/gabapentin were spiked into the homogenous matrix to acquire the desired initial concentration. The effect of ozone dose and reaction time on the degradation of diuron and gabapentin was investigated. Low ozone doses were sufficient for the complete degradation of diuron and gabapentin, although satisfactory total organic carbon (TOC) reduction was not achieved. Nonetheless, the toxicity from ozone treated effluents can be avoided by adjusting treatment conditions. Due to that degradation data obtained did not follow normalization, the non-parametric (non-normalised) data were analysed with a generalised linear regression model for Gaussian and Poisson distribution. Statistical analysis showed that the ozonation treatment of diuron/gabapentin followed the Gaussian model distribution and the degradation data obtained was proven significant using the Kruskal–Wallis test.


2017 ◽  
Vol 309 ◽  
pp. 339-348 ◽  
Author(s):  
Jeong-Ann Park ◽  
Boram Yang ◽  
Chanhyuk Park ◽  
Jae-Woo Choi ◽  
Case M. van Genuchten ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document