scholarly journals Future air pollution related health burdens associated with RCP emission changes in the UK

2021 ◽  
Vol 773 ◽  
pp. 145635
Author(s):  
Sara Fenech ◽  
Ruth M. Doherty ◽  
Fiona M. O'Connor ◽  
Clare Heaviside ◽  
Helen L. Macintyre ◽  
...  
2013 ◽  
Vol 13 (7) ◽  
pp. 3569-3585 ◽  
Author(s):  
G. B. Hedegaard ◽  
J. H. Christensen ◽  
J. Brandt

Abstract. So far several studies have analysed the impacts of climate change on future air pollution levels. Significant changes due to impacts of climate change have been made clear. Nevertheless, these changes are not yet included in national, regional or global air pollution reduction strategies. The changes in future air pollution levels are caused by both impacts from climate change and anthropogenic emission changes, the importance of which needs to be quantified and compared. In this study we use the Danish Eulerian Hemispheric Model (DEHM) driven by meteorological input data from the coupled Atmosphere-Ocean General Circulation Model ECHAM5/MPI-OM and forced with the newly developed RCP4.5 emissions. The relative importance of the climate signal and the signal from changes in anthropogenic emissions on the future ozone, black carbon (BC), total particulate matter with a diameter below 2.5 μm (total PM2.5 including BC, primary organic carbon (OC), mineral dust and secondary inorganic aerosols (SIA)) and total nitrogen (including NHx + NOy) has been determined. For ozone, the impacts of anthropogenic emissions dominate, though a climate penalty is found in the Arctic region and northwestern Europe, where the signal from climate change dampens the effect from the projected emission reductions of anthropogenic ozone precursors. The investigated particles are even more dominated by the impacts from emission changes. For black carbon the emission signal dominates slightly at high latitudes, with an increase up to an order of magnitude larger, close to the emission sources in temperate and subtropical areas. Including all particulate matter with a diameter below 2.5 μm (total PM2.5) enhances the dominance from emissions change. In contrast, total nitrogen (NHx + NOy) in parts of the Arctic and at low latitudes is dominated by impacts of climate change.


2012 ◽  
Vol 12 (9) ◽  
pp. 24501-24530 ◽  
Author(s):  
G. B. Hedegaard ◽  
J. H. Christensen ◽  
J. Brandt

Abstract. So far several studies have analysed the impacts of climate change on future air pollution levels. Significant changes due to impacts of climate change have been made clear. Nevertheless, these changes are not yet included in national, regional or global air pollution reduction strategies. The changes in future air pollution levels are caused by both impacts from climate change and anthropogenic emission changes and the importance of these signals needs to be quantified and compared. In this study we use the Danish Eulerian Hemispheric Model (DEHM) driven on meteorological input data from the coupled Atmosphere-Ocean General Circulation Model ECHAM5/MPI-OM and forced with the newly developed RCP4.5 emissions. The relative importance of the climate signal and the signal from changes in anthropogenic emissions on the future ozone, black carbon (BC), total particulate matter with a diameter below 2.5 μm (total PM2.5 including BC, primary organic carbon (OC), mineral dust and secondary inorganic aerosols (SIA)) and total nitrogen (including NHx + NOy) has been determined. For ozone the impacts of anthropogenic emissions dominates though a climate penalty is found in the Arctic region and the Northwestern Europe where the signal from climate change dampens the effect from the projected emission reductions of anthropogenic ozone precursors. The investigated particles are even more dominated by the impacts from emission changes. For black carbon the emission signal dominates slightly at high latitudes increasing to be up to an order of magnitude larger close to the emission sources in temperate and subtropical areas. Including all particulate matter with a diameter below 2.5 μm (total PM2.5) enhances the dominance from emissions change. In contrast, total nitrogen (NHx + NOy) in parts of the Arctic and at low latitudes is dominated by impacts of climate change.


Author(s):  
Eirini Dimakakou ◽  
Helinor J. Johnston ◽  
George Streftaris ◽  
John W. Cherrie

Human exposure to particulate air pollution (e.g., PM2.5) can lead to adverse health effects, with compelling evidence that it can increase morbidity and mortality from respiratory and cardiovascular disease. More recently, there has also been evidence that long-term environmental exposure to particulate air pollution is associated with type-2 diabetes mellitus (T2DM) and dementia. There are many occupations that may expose workers to airborne particles and that some exposures in the workplace are very similar to environmental particulate pollution. We conducted a cross-sectional analysis of the UK Biobank cohort to verify the association between environmental particulate air pollution (PM2.5) exposure and T2DM and dementia, and to investigate if occupational exposure to particulates that are similar to those found in environmental air pollution could increase the odds of developing these diseases. The UK Biobank dataset comprises of over 500,000 participants from all over the UK. Environmental exposure variables were used from the UK Biobank. To estimate occupational exposure both the UK Biobank’s data and information from a job exposure matrix, specifically developed for UK Biobank (Airborne Chemical Exposure–Job Exposure Matrix (ACE JEM)), were used. The outcome measures were participants with T2DM and dementia. In appropriately adjusted models, environmental exposure to PM2.5 was associated with an odds ratio (OR) of 1.02 (95% CI 1.00 to 1.03) per unit exposure for developing T2DM, while PM2.5 was associated with an odds ratio of 1.06 (95% CI 0.96 to 1.16) per unit exposure for developing dementia. These environmental results align with existing findings in the published literature. Five occupational exposures (dust, fumes, diesel, mineral, and biological dust in the most recent job estimated with the ACE JEM) were investigated and the risks for most exposures for T2DM and for all the exposures for dementia were not significantly increased in the adjusted models. This was confirmed in a subgroup of participants where a full occupational history was available allowed an estimate of workplace exposures. However, when not adjusting for gender, some of the associations become significant, which suggests that there might be a bias between the occupational assessments for men and women. The results of the present study do not provide clear evidence of an association between occupational exposure to particulate matter and T2DM or dementia.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Nana O. Bonsu

AbstractThe UK Plan for a Green Industrial Revolution aims to ban petrol and diesel cars by 2030 and transition to electric vehicles (EVs). Current business models for EV ownership and the transition to net-net zero emissions are not working for households in the lowest income brackets. However, low-income communities bear the brunt of environmental and health illnesses from transport air pollution caused by those living in relatively more affluent areas. Importantly, achieving equitable EV ownership amongst low-and middle-income households and driving policy goals towards environmental injustice of air pollution and net-zero emissions would require responsible and circular business models. Such consumer-focused business models address an EV subscription via low-income household tax rebates, an EV battery value-chain circularity, locally-driven new battery technological development, including EV manufacturing tax rebates and socially innovative mechanisms. This brief communication emphasises that consumer-led business models following net-zero emission vehicles shift and decisions must ensure positive-sum outcomes. And must focus not only on profits and competitiveness but also on people, planet, prosperity and partnership co-benefits.


Author(s):  
Naomi R Smart ◽  
Claire J Horwell ◽  
Trevor S Smart ◽  
Karen S Galea

Air pollution is a major health problem and children are particularly vulnerable to the adverse effects. Facemasks are one form of protection but, to be effective, they need to filter out airborne pollutants, fit the face well and be wearable. In this pilot study, we assess the perceived wearability of three facemasks (Vogmask, TuHao and ReSpimask) marketed in the UK as being designed to protect children against exposure to air pollution. Twenty-four primary school children wore each facemask during a standardised walking and running activity. After each activity, the children were asked to rate facemask wearability in terms of parameters, such as perceived comfort, hotness, breathability and fit. At the end of the trial, the children compared and identified their preferred facemask. The main complaint about the facemasks was the children’s faces being too hot. The ReSpimask was most frequently reported as being perceived to be the hardest to breathe through. The TuHao facemask was the only adjustable strap mask assessed but was reported to be difficult to adjust. Facemasks with a nose clip were frequently rated highest for fit (TuHao and Vogmask). The patterned, cloth fabric Vogmask had significantly higher ratings for appearance and perceived fit. The results show children’s perceptions of facemasks are highly affected by the facemask’s design, hotness and perceived breathability. By making children’s facemasks more appealing, breathable, cooler and improving their fit, wearability may be improved.


2021 ◽  
Author(s):  
Yuqiang Zhang ◽  
Drew Shindell ◽  
Karl Seltzer ◽  
Lu Shen ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. China has seen dramatic emission changes from 2010, especially after the implementation of Clean Air Action in 2013, with significant air quality and human health benefits observed. Air pollutants, such as PM2.5 and surface ozone, as well as their precursors, have long enough lifetime in the troposphere which can be easily transported downwind. So emission changes in China will not only change the regional air quality domestically, but also affect the air quality in downwind regions. In this study, we use a global chemistry transport model to simulate the influence on both domestic and foreign air quality from the emission change from 2010 to 2017 in China. By applying the health impact functions derived from epidemiology studies, we then quantify the changes in air pollution-related (including both PM2.5 and O3) mortality burdens at regional and global scales. The majority of air pollutants in China reach their peak values around 2012 and 2013. Compared with the year 2010, the population-weighted annual PM2.5 in China increases till 2011 (94.1 μg m−3), and then begins to decrease. In 2017, the population-weighted annual PM2.5 decreases by 17.6 %, compared with the values in 2010 (84.7 μg m−3). The estimated national PM2.5 concentration changes in China are comparable with previous studies using fine-resolution regional models, though our model tends to overestimate PM2.5 from 2013 to 2017 when evaluated with surface observation in China during the same periods. The emission changes in China increased the global PM2.5-related mortality burdens from 2010 to 2013, by 27,700 (95 %CI: 23,900–31, 400) deaths yr−1 in 2011, and 13, 300 (11,400–15,100) deaths yr−1 in 2013, among which at least 93 % occurred in China. The sharp emission decreases after 2013 bring significant benefits for reduced avoided premature mortality in 2017, reaching 108, 800 (92,800–124,800) deaths yr−1 globally, among which 92 % happening in China. Different trend as PM2.5, the annual maximum daily 8-hr ozone in China increased, and also the ozone-related premature deaths, ranging from 3,600 (2,700–4,300) deaths yr−1 in 2011 (75 % of global total increased premature deaths), and 8,500 (6,500–9,900) deaths yr−1 in 2017 (143 % of the global total). Downwind regions, such as South Korea, Japan, and U.S. generally see a decreased O3-related mortality burden after 2013 as a combination of increased export of ozone and decreased export of ozone precursors. In general, we conclude that the sharp emission reductions in China after 2013 bring benefits of improved air quality and reduced premature deaths associated with air pollution at global scale. The benefits are dominated by the PM2.5 decreases since the ozone is shown to actually increase with the emission decrease.


2013 ◽  
Vol 77 ◽  
pp. 260-266 ◽  
Author(s):  
T.W. Smith ◽  
C.J. Axon ◽  
R.C. Darton
Keyword(s):  
The Uk ◽  

Sign in / Sign up

Export Citation Format

Share Document