Methane production and active microbial communities during anaerobic digestion of three commercial biodegradable coffee capsules under mesophilic and thermophilic conditions

Author(s):  
G. Cazaudehore ◽  
F. Monlau ◽  
C. Gassie ◽  
A. Lallement ◽  
R. Guyoneaud
1997 ◽  
Vol 36 (6-7) ◽  
pp. 57-64 ◽  
Author(s):  
Alla N. Nozhevnikova ◽  
C. Holliger ◽  
A. Ammann ◽  
A. J. B. Zehnder

Methanogenic degradation of organic matter occurs in a wide temperature range from psychrophilic to extreme thermophilic conditions. Mesophilic and thermophilic methanogenesis is relatively well investigated, but little is known about low temperature methanogenesis and psychrophilic methanogenic communities. The aim of the present work was to study methanogenesis in a wide range of temperatures with samples from sediments of deep lakes. These sediments may be considered deposits of different types of microorganisms, which are constantly exposed to low temperatures. The main question was how psychrophilic methanogenic microbial communities compare to mesophilic and thermophilic ones. Methanogenesis in a temperature range of 2–70°C was investigated using sediment samples from Baldegger lake (65 m) and Soppen lake (25 m), Switzerland. Methane production from organic matter of sediments occurred at all temperatures tested. An exponential dependence of methane production rate was found between 2 and 30°C. Methanogenesis occurred even at 70°C. At the same time stable methane production from organic matter of sediments was observed at temperatures below 10°C. Methanogenic microbial communities were enriched at different temperatures. The communities enriched at 4–8°C had the highest activity at low temperatures indicating that a specific psychrophilic community exists. Addition of substrates such as cellulose, volatile fatty acids (butyrate, propionate, acetate), methanol and H2/CO2 stimulated methane production at all temperatures. H2/CO2 as well as methanol were directly converted to methane under thermophilic conditions. At low temperatures these substrates were converted to methane by a two-step process. First acetate was formed, followed by methane production from acetate. When acetate concentrations were high, acetoclastic methanogenesis was inhibited at low temperatures. This reaction appears to be one of the “bottle neck” in psychrophilic methanogenesis.


2015 ◽  
Vol 72 (8) ◽  
pp. 1398-1403 ◽  
Author(s):  
Glenda Cea-Barcia ◽  
Gloria Moreno ◽  
Germán Buitrón

The anaerobic digestion of mixed indigenous microalgae, grown in a secondary effluent, was evaluated in batch tests at mesophilic (35°C) and thermophilic (50°C) conditions. Under mesophilic conditions, specific methane production varied from 178 to 207 mL CH4/g volatile solids (VS) and the maximum production rate varied from 8.8 to 26.1 mL CH4/(gVS day), depending on the type of microalgae culture. Lower methane parameters were observed in those cultures where Scenedesmus represents more than 95% of the microalge. The culture with the lowest digestion performances under mesophilic conditions was studied under thermophilic conditions. The increase in the incubation temperature significantly increased the specific methane production (390 mL CH4/g VS) and rate (26.0 mL CH4/(gVS day)). However, under thermophilic conditions a lag period of 30 days was observed.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 4528-4552
Author(s):  
Luis A. Ordaz-Díaz ◽  
Ana M. Bailón-Salas

Sugars, starches, and cellulose materials are used for ethanol production. When producing a liter of alcohol, 10 to 15 liters of liquid waste are generated. This waste is called vinasse, and it generates negative impacts on the environment. The process of storing and disposing vinasse in soils generates emissions to the atmosphere, mainly methane. Anaerobic treatment allows for the capture and generation of more biogas, therefore allowing mitigation of the environmental impacts. The microbial diversity present in the anaerobic digestion (AD) of vinasse is strongly related to the efficiency and quality of methane production. The gene 16s rDNA-based molecular techniques have been the most commonly used techniques for monitoring microbial communities present in the digesters. However, the identification is not enough. Rather, it is necessary to know the metagenomic functionality in this type of habitat. This review provides a comprehensive overview of methods to identify the microorganisms in the anaerobic digestion of vinasse. In addition, microbial community identification in vinasse reactors and their relationship with methane production are reviewed.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4205
Author(s):  
Jacob Rosholm Mortensen ◽  
Alastair James Ward ◽  
Martin Riis Weisbjerg ◽  
Sasha Daniel Hafner ◽  
Henrik Bjarne Møller

In the biogas industry, feedstock plans are used to estimate methane production and nutrient content in the digestate, however, these predictions do not consider the mineralized nitrogen fraction of the feedstock, which is useful when determining the quality of the digestate. In this study, the artificial fiber bag technique, which is commonly used to study feedstock degradation in ruminants, was implemented in anaerobic digestion to quantify mineralization of N and S. The artificial fiber bags were used to enclose substrates but with access to inoculum because of small pores in the bags, thereby enabling digestion. The content of the bags was analyzed before and after digestion to quantify residual mass as well as N and S concentration in the substrate. The method was validated through batch anaerobic digestion of a single substrate with and without bags, where the bags showed little influence on methane production and degradation. Semi-continuous anaerobic digestion experiments showed higher substrate degradation and higher N and S release at thermophilic conditions using four different types of feedstocks and proved useful for solid feedstocks but less so for semi-solid feedstock. For N, most of the mineralization occurred during the first 15 days over a trial of 30 days.


Sign in / Sign up

Export Citation Format

Share Document