Is froth flotation a potential scheme for microplastics removal? Analysis on flotation kinetics and surface characteristics

Author(s):  
Yingshuang Zhang ◽  
Hongru Jiang ◽  
Kai Bian ◽  
Hui Wang ◽  
Chongqing Wang
Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 354 ◽  
Author(s):  
Darius Wonyen ◽  
Varney Kromah ◽  
Borbor Gibson ◽  
Solomon Nah ◽  
Saeed Chelgani

It is well documented that flotation has high economic viability for the beneficiation of valuable minerals when their main ore bodies contain magnesium (Mg) carbonates such as dolomite and magnesite. Flotation separation of Mg carbonates from their associated valuable minerals (AVMs) presents several challenges, and Mg carbonates have high levels of adverse effects on separation efficiency. These complexities can be attributed to various reasons: Mg carbonates are naturally hydrophilic, soluble, and exhibit similar surface characteristics as their AVMs. This study presents a compilation of various parameters, including zeta potential, pH, particle size, reagents (collectors, depressant, and modifiers), and bio-flotation, which were examined in several investigations into separating Mg carbonates from their AVMs by froth flotation.


2014 ◽  
Vol 962-965 ◽  
pp. 361-369
Author(s):  
Huan Liang ◽  
Feng Zhou ◽  
Ze Ying Wu ◽  
Chun Jie Yan ◽  
Wen Jun Luo

Evaluation possibility of low grade manganese mineral from Hunan by froth flotation technique was investigated. Manganese mineral sample was characterized with mineralogical analysis, XRD, and SEM studies for its mineral content and surface characteristics. XRD analysis showed that the gangue contents of manganese minerals are constituted mainly by dolomite as a carbonate mineral, quartz and feldspar. SEM indicated that existence of rhodochrosite, which mainly fills in the dolomite minerals. The influences of important factors on manganese mineral flotation are investigated. The size of grind, pulp pH, dosages of depressant and collector are essential to the effective recovery of rhodochrosite in manganese mineral flotation.


Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 681
Author(s):  
Guixia Fan ◽  
Liguang Wang ◽  
Yijun Cao ◽  
Chao Li

Froth flotation has been widely used in upgrading iron ores. Iron ore flotation can be performed in two technical routes: direct flotation of iron oxides and reverse flotation of gangue minerals with depression of iron oxides. Nowadays, reverse flotation is the most commonly used route in iron ore flotation. This review is focused on the reverse flotation of iron ores, consisting of reverse cationic flotation and reverse anionic flotation. It covers different types of collecting agents used in reverse iron ore flotation, the surface characteristics of minerals commonly present in iron ores (e.g., iron oxides, quartz, alumina-bearing minerals, phosphorus-bearing minerals, iron-bearing carbonates, and iron-bearing silicates), and the adsorption mechanisms of the collecting agents at the mineral surface. The implications of collecting agent–mineral interactions for improving iron ore flotation are discussed.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1003
Author(s):  
Michal Marcin ◽  
Martin Sisol ◽  
Dušan Kudelas ◽  
Igor Ďuriška ◽  
Tomáš Holub

This paper investigates the effect of sodium hexametaphosphate (SHMP) depressant/dispersant in the presence of methyl isobutyl carbinol (MIBC) frother and soluble starch (SS) depressant on the flotation kinetics of talc ore. Emphasis is on a comparison between the evaluation of a custom design of experiment (DoE) using the multilinear regression analysis (MRA) and response surface methodology (RSM) approach. Although analysis of variance (ANOVA) is a good first step in the evaluation of the effect of factors on froth flotation processing, it nonetheless only reveals the effects that are the same under all conditions. In the case of SHMP, its effect on separation efficiency is positive; however, if it is used along with SS, the effect is negative. Moreover, if a higher frother dosage is used, the effect of SHMP on separation efficiency is negligible.


1984 ◽  
Vol 51 (01) ◽  
pp. 075-078 ◽  
Author(s):  
R G Schaub ◽  
C A Simmons

SummaryTwenty-seven adult male New Zealand rabbits (3–4 kgs) were used in this study. Six rabbits received vehicle, 3 groups of 6 each received doses of 4,5-bis(p-methoxyphenyl)-2-(trifluoromethyl)- thiazole, (U-53,059), at 0.3 mg/kg, 3.0 mg/kg and 30.0 mg/kg/day respectively. Drug and vehicle doses were given orally each day starting 3 days before balloon injury and continuing for the entire 2 week time period. Three rabbits were used as nontreated sham controls. In the vehicle and U-53,059 treated groups aortae were denuded of endothelial cells by balloon catheter injury. Two weeks after injury platelet aggregation to collagen was measured and the aortae removed for analysis of surface characteristics by scanning electron microscopy and lesion size by morphometry. All doses of U-53,059 inhibited platelet aggregation. The 3.0 and 30.0 mg/kg groups had the greatest inhibitory effect. All balloon injured aortae had the same morphologic characteristics. All vessels had similar extent and intensity of Evan’s blue staining, similar areas of leukocyte/platelet adhesion, and a myointimal cell cover of transformed smooth muscle cells. The myointimal proliferative response was not inhibited at any of the drug doses studied.


MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3141-3152
Author(s):  
Alma C. Chávez-Mejía ◽  
Génesis Villegas-Suárez ◽  
Paloma I. Zaragoza-Sánchez ◽  
Rafael Magaña-López ◽  
Julio C. Morales-Mejía ◽  
...  

AbstractSeveral photocatalysts, based on titanium dioxide, were synthesized by spark anodization techniques and anodic spark oxidation. Photocatalytic activity was determined by methylene blue oxidation and the catalytic activities of the catalysts were evaluated after 70 hours of reaction. Scanning Electron Microscopy and X Ray Diffraction analysis were used to characterize the catalysts. The photocatalyst prepared with a solution of sulfuric acid and 100 V presented the best performance in terms of oxidation of the dye (62%). The electric potential during the synthesis (10 V, low potential; 100 V, high potential) affected the surface characteristics: under low potential, catalyst presented smooth and homogeneous surfaces with spots (high TiO2 concentration) of amorphous solids; under low potential, catalyst presented porous surfaces with crystalline solids homogeneously distributed.


2006 ◽  
Vol 9 (2) ◽  
pp. 127-134
Author(s):  
Yao Wu ◽  
Hu Li ◽  
Tun Yuan ◽  
Chunlin Deng ◽  
Bangcheng Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document